首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bragg cut-off for plane of polycrystalline beryllium of various lengths of 300 and 116 K has been measured with an energy resolution of 5 μeV. The natural width of the cut-off is 12.5±1.5 μeV, independent of temperature and length of beryllium and also of physical characteristics and certain metallurgical treatments of the powder. Such blocks of beryllium would be suitable for designing a ΔT-window spectrometer with resolution ⩾20 μeV. Bragg cut-offs corresponding to (0002) and planes of beryllium have been separated for the first time. These can also be used for producing additional energy windows in a ΔT-window spectrometer, thus increasing its efficiency. Paper entitled ‘ΔT-window spectrometer’ will appear in the November issue of Pramana.  相似文献   

2.
The thermonuclear gain G for bulk and spark ignitions are calculated using a mathematical simulation of thermonuclear combustion in a DT plasma of laser targets for various parameters of the target plasma and (isobaric and isochoric) ignitors. The critical parameters of ignitors at which an effective nuclear burst occurs with G ~ 100 are calculated. It is shown that a further increase in the temperature and size of the ignitors virtually does not affect the efficiency of DT fuel burnup. Irrespective of the ignition technique, the value of G can be estimated with the help of a simple asymptotic formula. At the same time, the critical parameters of ignitors are determined to a considerable extent by the mode of ignition and by the target parameters. Spark ignition with an isochoric ignitor corresponding to the fast ignition mode is considered in detail. It is shown that the main critical parameter for optimal isochoric ignitors is their thermal energy liberated upon absorption of an auxiliary ultrashort laser pulse. The critical values of this energy are calculated.  相似文献   

3.
Summary A general scheme is proposed for the interpretation of the phenomena involving low-energy hydrogen-isotope fusion. This scheme is especially developed for the interpretation of the fusion rate observed after the impact of heavy-water clusters (D2O) n , 25≲n≲1350, onto targets of titanium deuteride TiD. It is shown that 1) the impinging energy of large clusters or molecules is equiparted among a lot of target atoms which are brought in collective motion; 2) data can conveniently be represented in an Arrhenius plot; 3) this plot suggests that fusion is a thermally activated process from a metastable precursor; 4) the activation energy for the precursor formation isE *≃2E 0 (E 0 being the electron binding energy in the hydrogen atom), and 5) the activated precursor can reasonably be identified with the metastable binuclear heliumlike (D+D+)2e atom.  相似文献   

4.
We review the results of experimental and theoretical studies of the properties of a nonequilibrium plasma produced from volume-structured media, containing micro- and nano-size internal elements, under laser-pulse irradiation. We consider two types of materials, i.e., regularly and stochastically structured materials. The first type is either a set of flat layers or cylindrical and spherical shells of micrometer thickness, and the second type is either foams of light elements or light foams containing clusters of heavy elements with dimensions in the range of 10–100 nm. We study the properties of high-temperature laser-produced plasmas of such materials and applications directed to developing the design of inertial confinement fusion (ICF) targets and creating powerful sources of thermonuclear neutron and soft X-ray emission initiated by the laser pulse. The foam materials can be used as absorbers capable of providing homogeneity of laser-energy absorption by the target. A neutron yield up to 10141015 DT neutrons per shot can be achieved by heating regularly structured materials using a laser pulse in the regime of the consequent thermal explosions of solid elements containing isotopes of hydrogen. Laser-radiation conversion into soft X-ray emission with the efficiency controlled in a wide range may be realized in laser-produced plasmas of porous media doped with clusters of heavy elements. In particular, such a material can be used as an absorber–converter of laser radiation in inertial confinement fusion targets. Under direct irradiation of an ICF target by a laser pulse, such a converter can provide transformation of 20–30% of the absorbed laser energy into the energy of X-ray radiation transferred to thermonuclear capsules.  相似文献   

5.
The Young’s modulus and the internal friction of beryllium polycrystals (size grain from 6 to 60 μm) prepared by the powder metallurgy method have been studied as functions of the amplitude and temperature in the range from 100 to 873 K. The measurements have been performed using the composite piezoelectric vibrator method for longitudinal vibrations at frequencies about 100 kHz. Based on the acoustic measurements, the data have been obtained on the elastic and inelastic (microplastic) properties as functions of vibration stress amplitudes within the limits from 0.2 to 30–60 MPa. The microplastic deformation diagram is shown to become nonlinear at the amplitudes higher than 5 MPa. The beryllium mechanical characteristics (the yield strength σ 0.2, the ultimate strength σ u , and the conventional microscopic yield strength σ y ) obtained with various grain sizes are compared. At room temperature, all the parameters satisfactorily obey the Hall-Petch relationship, although there is no complete similarity. The temperature dependences are quite different, namely: σ 0.2(T) and σ u (T) decrease monotonically during heating from room temperature to higher temperatures; however, σ y (T) behaves unusually, and it has a minimum near 400 K. The different levels of stresses and the absence of similarity indicate that the scattering of the ultrasound energy and the formation of a level of the macroscopic flow stresses in beryllium occur on dislocation motion obstacles of different origins.  相似文献   

6.
We have experimentally investigated the processes of laser light absorption and energy transfer in porous targets made of “agar-agar” (C14H18O7) with an average density of 1–4 mg/cm3 illuminated by the focused beam of a neodymium laser with an intensity of 1014 W/cm2 within a pulse of duration 2.5 ns. Many important scientific and technical problems, e.g., inertial-confinement thermonuclear fusion, the creation of lasers in the x-ray regime, and the modeling of astrophysical phenomena under laboratory conditions, can be successfully addressed by using low-density porous media as components of such targets. In our experiments with porous targets of variable density and thickness we used optical and x-ray diagnostic methods, which ensured that our measurements were made with high temporal and spatial resolution. We show that a region forms within the porous target consisting of a dense high-temperature plasma which effectively absorbs the laser radiation. Energy is transferred from the absorption region to the surrounding layer of porous material at up to 2×107 cm/s. Experimental data are in good agreement with the predictions of our theoretical model, which takes into account the specific features of absorption of laser radiation in a porous material and is based on representing the energy transfer within the material as a hydrothermal wave. Zh. éksp. Teor. Fiz. 111, 903–918 (March 1997)  相似文献   

7.
One-dimensional numerical calculations are used to explore the possibility of thermonuclear fuel “ignition” (achieving an energy gainG ~ 1) in two-cascade laser-fusion targets with a relatively small aspect ratio for the inner shell. It is demonstrated that the parameters of the laser-produced thermonuclear plasma for a laser pulse energy of 200 kJ, various wavelengths of the laser radiation, and a simple pulse shape closely correspond to the “ignition” state for a target with an inner shell having an aspect ratio of ~ 3–10. This is indicative of the high energy efficiency of two-cascade targets that appear to be characterized by high reliability with respect to evolution of hydrodynamic instabilities.  相似文献   

8.
One-dimensional numerical calculations were performed to study the dependence of conditions for initiating thermonuclear combustion and of the target gain of direct-ignition inertial fusion targets ignited by a short radiation pulse on the initial temperature of a preliminarily compressed fuel and the initial heat energy distribution between plasma electrons and ions in the ignition region (igniter). The igniter parameters at which an effective thermonuclear target explosion with a G ~ 103 target gain occurred were shown to substantially depend on the initial temperature of the major fuel fraction and the initial heat energy distribution between igniter electrons and ions. The heat energy of the igniter passed a minimum as the size of the igniter decreased. The dependences of these minimum energies on the temperature of the major fuel fraction at various initial energy distributions between igniter electrons and ions were determined. An increase in the temperature of the major fuel fraction was shown to decrease the target gain.  相似文献   

9.
The opto-mechanical characteristics, such as the specific mechanical recoil momentum, the specific impulse, and the energy efficiency, of the laser ablation of flat polymer targets ((C2F4) n , (CH2O) n ) have been determined experimentally for the first time for the case of excitation with femtosecond pulses (τ ∼ 45–70 fs) of UV-IR (λ ∼ 266, 400, 800 nm) laser radiation (I 0 up to 1015 W/cm2) under normal atmospheric and vacuum (p ∼ 10−4 mbar) conditions. The efficiency of mechanical recoil momentum generation is analyzed for various regimes of the laser irradiation.  相似文献   

10.
Abstract

The compounds of beryllium - Be(IO3)2.4H2O, its deuterated analogue and Be(IO3)2 were studied by IR-spectroscopy over the range of 200 to 4000 cm?1.  相似文献   

11.
The interaction of ultrashort laser pulses with solid state targets is studied concerning the production of short X-ray pulses with photon energies up to about 10 keV. The influence of various parameters such as pulse energy, repetition rate of the laser system, focusing conditions, the application of prepulses, and the chirp of the laser pulses on the efficiency of this highly nonlinear process is examined. In order to increase the X-ray flux, the laser pulse energy is increased by a 2nd multipass amplifier from 750 μJ to 5 mJ. By applying up to 4 mJ of the pulse energy a X-ray flux of 4×1010 Fe K α photons/s or 2.75×1010 Cu K α photons/s are generated. The energy conversion efficiency is therefore calculated to η Fe≈1.4×10−5 and η Cu≈1.0×10−5. The X-ray source size is determined to 15×25 μm2. By focusing the produced X-rays using a toroidally bent crystal a quasi-monochromatic X-ray point source with a diameter of 56 μm×70μm is produced containing ≈104 Fe K α1 photons/s which permits the investigation of lattice dynamics on a picosecond or even sub-picosecond time scale. The lattice movement of a GaAs(111) crystal is shown as a typical application.  相似文献   

12.
The phonon spectrum of cubic cadmium metastannate and parameters of the crystal structure of its distorted phases were calculated from first principles within the density functional theory. It is shown that the phonon spectrum and the energy spectrum of the distorted phases in α-CdSnO3 resemble surprisingly the corresponding characteristics of CdTiO3. The ground state of α-CdSnO3 is the ferroelectric Pbn21 phase, the energy gain from the phase transition to this phase from the nonpolar phase Pbnm is ∼30 meV, and the spontaneous polarization is 0.25 C/m2. The analysis of the eigenvector of the ferroelectric mode in α-CdSnO3 and the partial densities of states indicates that the ferroelectric instability in this crystal, which does not contain transition d-element atoms, is associated with the formation of a covalent bonding between Cd and O atoms.  相似文献   

13.
To provide continuous operation of a reactor based on inertial confinement fusion (ICF), the thermonuclear burn region should be refilled with fuel with a frequency of 1 million targets per day. The first stage in the target production is diffusion filling of polymeric (CH) shells with fuel gas which is deuterium (D2) or deuterium–tritium (DT) mixture. The results of simulation of filling reactor-scale CH-shells (Ø ~ 4 mm) to a pressure of ~1100 atm at 300 K in the mode with a constant pressure gradient are presented. Simple and two-layer shells of compact and porous polymers are considered. The problems of constructing an optimum DT-filling scheme avoiding CH-shell fracture due to tritium beta decay are discussed.  相似文献   

14.
The characteristics of X rays of a laser plasma generated in the interaction of a femtosecond pulse with solid targets in an air atmosphere have been investigated. It has been shown that the mechanism for the generation of X rays in the interaction of short intense laser pulses with solid targets in a gas atmosphere is attributed to the generation of fast electrons in the region of the filamentation of a laser pulse. It has been proven experimentally that under such conditions, the solid target irradiated by laser radiation of even a low density of about 1015 W/cm2 very efficiently emits ∼10-keV photons. It has been shown theoretically that the maximum energy of accelerated electrons can reach ɛmax ∼ 100–200 keV under these conditions. This means that the proposed method can provide characteristic radiation with the energy of photons much higher than 10 keV.  相似文献   

15.
An efficient method is proposed for generating thermonuclear neutrons by irradiating with a laser pulse a volume-structured material of subcritical density, consisting of a series of thin layers of condensed matter separated by interlayers of low-density matter (or a vacuum gap). The plasma ions are heated up to thermonuclear temperatures much higher than the electron temperature by hydrothermal dissipation of the energy of the laser radiation, as a wave of thermal explosions of the layers propagates along the laser beam axis, followed by collisions of plasma counterflows with conversion of the kinetic energy into thermal energy of ions. Different variants of the targets and experimental conditions are discussed in order to demonstrate the proposed method of neutron generation. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 8, 521–526 (25 October 1997)  相似文献   

16.
The generation of lower (third) and higher harmonics of femtosecond laser radiation in plasmas produced by laser ablation of different targets with a small atomic number Z (B, Be, Li) has been investigated. The high (10−3) efficiency of third-harmonic generation was observed in plasma produced on the boron surface. Efficient third-harmonic generation was also observed in beryllium plasma using femtosecond pulses of Ti:sapphire laser radiation (λ = 790 nm) and its second harmonic (395 nm). We could tune the higher harmonics generation spectrum by tuning the crystal converter when using 395-nm radiation to be converted. It is shown that, in plasmas formed on targets with small Z, the conversion efficiency and limiting generated harmonic order depend on the delay between the ablation pulse and the pulse to be converted.  相似文献   

17.
A twin system for hydrogen absorption experiments has been constructed to replicate the phenomenon of heat and 4He generation by D2 gas absorption in nano-sized Pd powders reported by Arata and Zhang, and to investigate the underlying physics. For Pd⋅Zr oxide nano-powders, anomalously large energies of hydrogen isotope absorption, 2.4±0.2 eV/D-atom and 1.8±0.4 eV/H-atom, as well as large loading ratio of D/Pd=1.1±0.0 and H/Pd=1.1±0.3, respectively, were observed in the phase of deuteride/hydride formation. The sample charged with D2 also showed significantly positive output energy in the second phase after the deuteride formation.  相似文献   

18.
Transport of exhausted thermonuclear fuel in the ITER divertor and pumping duct was modeled on a specially designed dc glow discharge setup using mass spectrometry, optical and electron microscopy, and electron probe microanalysis. Transport and deposition of hydrocarbon radicals transferred in an H2/C x H yx mixture through a hollow stainless steel anode at a total mixture pressure of 8–212 Pa and a methane content to 15 mol % were considered. It was shown that deposition of radicals and ions (CH3, C2H3, C2H5) with kinetic energies of 0.03–3 eV on the anode inner surface at 600 K was suppressed to a large extent. In the temperature range of 600–800 K, deposition of ions and radicals with kinetic energy of ~3 eV was partially restored with the formation of soft a-C:H films, while thermalized radicals were not condensed.  相似文献   

19.
An Er:Yb:Sr3Gd2(BO3)4 crystal was grown by the Czochralski method. The polarized spectral properties of the crystal were investigated, including the polarized absorption and fluorescence spectra and fluorescence decay. The fluorescence quantum efficiency of the upper laser level 4I13/2 of Er3+ ions and the efficiency of the energy transfer from Yb3+ to Er3+ ions were calculated. End-pumped by a diode laser at 970 nm in a hemispherical cavity, a 1.6 W quasi-cw laser at 1.5–1.6 μm with a slope efficiency of 18% and an absorbed pump threshold of 5.9 W was achieved in a 1.8-mm-thick Z-cut Er:Yb:Sr3Gd2(BO3)4 crystal. This crystal has a flat and broad gain curve at 1.5–1.6 μm and so is also a potential gain medium for tunable and short pulse lasers.  相似文献   

20.
We report on 2.0-μm emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+ upon excitation of a conventional 808 nm laser diode. The Judd-Ofelt strength parameters, spontaneous radiative transition probabilities and radiative lifetime of Ho3+ have been calculated from the absorption spectra by using the Judd-Ofelt theory. Significant enhancement of 2.0-μm emission of Ho3+ has been observed with increasing Tm3+ doping up to 0.7 mol%. The energy transfer coefficient of the forward Tm3+→Ho3+ is approximately 17 times larger than that of the backward Tm3+←Ho3+ energy transfer. Our result indicates that the maximum gain of 2.0-μm emission, assigned to the transition of 5I75I8 of Ho3+, might be achieved from the tellurite glass at the concentration of 0.5 mol% of Tm2O3 and 0.15 mol% of Ho2O3. The high gain coefficient and quantum efficiency (1.16) along with the large value of the product of the stimulated emission cross-section and the measured radiative lifetime (4.12×10−27 m2s) of the Ho3+/Tm3+-codoped tellurite glasses might find potential applications in efficient 2.0-μm laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号