首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction pathways of high-spin iron hydride complexes are relevant to the mechanism of N2 reduction by nitrogenase, which has been postulated to involve paramagnetic iron-hydride species. However, almost all known iron hydrides are low-spin, diamagnetic Fe(II) compounds. We have demonstrated that the first high-spin iron hydride complex, LtBuFeH (LtBu = bulky beta-diketiminate), reacts with PhN=NPh to completely cleave the N-N double bond, giving LtBuFeNHPh. Here, we disclose a series of experiments that elucidate the mechanism of this reaction. Crossover and kinetic experiments rule out common nonradical mechanisms, and support a radical chain mechanism mediated by iron(I) species including a rare eta2-azobenzene complex. Therefore, this high-spin iron(II) hydride can break N-N bonds through both nonradical and radical insertion mechanisms, a special feature that enables novel reactivity.  相似文献   

2.
The reactions of N≡Mo(OR)(3) (R = (t)Bu, (i)Pr) with (Me(3)Si)(2)NPNSiMe(3) (1), (Me(3)Si)(2)NPN(t)Bu (2), (Me(3)Si)(2)NPS(N(t)Bu) (3) and (Me(3)Si)(2)NP(NSiMe(3))(2) (4) have been studied. Reported complexes were synthesized via 1,2-addition of an Mo-OR bond across the P=N bond, resulting in four-membered metallacycles of the corresponding σ(2)λ(3)-iminophosphine or σ(3)λ(5)-iminophosphorane with trialkoxynitridomolybdenum. The structure of all new compounds was elucidated by (1)H, (13)C and (31)P NMR spectroscopy. Compounds [(Me(3)Si)(2)N-P(NSiMe(3))(O-(t)Bu)]{((t)BuO)(2)Mo≡N} (5), [(Me(3)Si)(2)N-PS(N(t)Bu)(O-(t)Bu)]{((t)BuO)(2)Mo≡N} (7), [(Me(3)Si)(2)N-P(NSiMe(3))(2)(O-(t)Bu)]{((t)BuO)(2)Mo≡N} (8) and [(Me(3)Si)(2)N-P(NSiMe(3))(2)(O-(i)Pr)]{((i)PrO)(2)Mo≡N} (12) were also characterized by single X-ray analysis and shown to be metallacycles containing the Mo atom with an intact terminal nitrido ligand.  相似文献   

3.
Atmospheric N2 is activated by two transient Nb(III) "(PNP)NbCl2" (PNP- = N[2-P(CHMe2)2-4-methylphenyl]2) fragments to form the bridging diimido [(PNP)NbCl2]2(mu-N2) (1). Complex 1 can also be independently synthesized from Nb(IV) and Nb(V) precursors via one-electron and transmetalation reactions, respectively. In the presence of azobenzene, the transient Nb(III) intermediate, prepared from Li(PNP) and NbCl3(DME) (DME = dimethoxyethane) under Ar, cleaves the N=N bond via a metal-ligand cooperative four-electron reduction to form niobium imide and phosphoranimine functionalities. Structural studies are presented and discussed for various Nb systems bearing the pincer-type framework PNP as well as the N2 and azobenzene activated products. Theoretical studies addressing the Nb-N2-Nb core in 1 are also presented.  相似文献   

4.
5.
6.
We have described the synthesis of the cyclometalated trihydride ditantalum(V) complexes supported by the aryloxide tridentate ligand. According to variable-temperature NMR studies, these dimers could provide a masked form of Ta(IV)-Ta(IV) and/or Ta(III)-Ta(III). In addition, these complexes were found to undergo hydrodeoxygenation of the aryloxide ligand.  相似文献   

7.
8.
The title compounds are cleaved cleanly at the C=N bond by singlet oxygen ((1)O(2), (1)Delta(g)) yielding arylaldehydes and N-aryl-N-methylnitrosamines. These reactions take place more rapidly at -78 degrees C than at room temperature. The effects of substituent variation at both the C-aryl and N-aryl groups were studied using a competitive method. Good correlations of the resulting rate ratios with substituent constants (sigma(-) or sigma(+)) were obtained yielding small to very small rho values indicative of small to very small changes in charge distribution between the reactant and the rate determining transition state. Electron withdrawing groups on the C-aryl moiety retard reaction somewhat by preferential stabilization of the hydrazone. Electron donors on the other hand slightly stabilize the rate determining transition state. Substituents on the N-aryl group have almost no effect. Inhibition by 3,5-di-tert-butylphenol was not observed showing that free (uncaged) radical intermediates are not involved in the mechanism. We postulate a mechanism in which the initial event is exothermic electron transfer from the hydrazone to (1)O(2) leading to an ion-radical caged pair. Subsequent covalent bond formation between the hydrazone carbon and an oxygen atom is rate controlling. The transition state for this step also has a lower enthalpy than the starting reactants, but the free energy of activation is dominated by a large negative TDeltaS++term leading to the negative temperature dependence. Direct formation of a C-O bond in the initial step is not unambiguously ruled out. Subsequent steps lead to C-N cleavage.  相似文献   

9.
Wei H  Wang X  Liu Q  Mei Y  Lu Y  Guo Z 《Inorganic chemistry》2005,44(17):6077-6081
The cleavage of a disulfide bond and the redox equilibrium of thiol/disulfide are strongly related to the levels of glutathione (GSH)/oxidized glutathione (GSSG) or mixed disulfides in vivo. In this work, the cleavage of a disulfide bond in GSSG induced by a platinum(II) complex [Pt(Met)Cl2] (where Met = methionine) was studied and the cleavage fragments or their platinated adducts were identified by means of electrospray mass spectrometry, high-performance liquid chromatography, and ultraviolet techniques. The second-order rate constant for the reaction between [Pt(Met)Cl2] and GSSG was determined to be 0.4 M(-1) s(-1) at 310 K and pH 7.4, which is 100- and 12-fold faster than those of cisplatin and its monoaqua species, respectively. Different complexes were formed in the reaction of [Pt(Met)Cl2] with GSSG, mainly mono- and dinuclear platinum complexes with the cleavage fragments of GSSG. This study demonstrated that [Pt(Met)Cl2] can promote the cleavage of disulfide bonds. The mechanistic insight obtained from this study may provide a deeper understanding on the potential involvement of platinum complexes in the intracellular GSH/GSSG systems.  相似文献   

10.
The tris(arylthiolate) vanadium(III) complex (1) has been synthesized in good yield. This complex is found to undergo CH activation across a V-S bond in the presence of TMEDA to give a cyclometalated species along with free arylthiol. Complex 1 behaves as a two-electron reductant toward Ad-N(3), yielding an imide complex. Treatment of 1 with azobenzene produces an imide-sulfenamide compound, in which an azo N=N bond cleavage takes place concomitant with formation of a V=N and an S-N bond.  相似文献   

11.
Olefin oxidation with molecular oxygen, promoted by a transition metal catalyst and a thiophenol, involved C=C bond cleavage into the corresponding carbonyl derivatives. This new reaction proceeds under one atmosphere of oxygen, at room temperature, in the presence of an excess of thiophenol and a catalyst such as MnL(2) 3a or VClL(2) 3c. It was applied to aromatic and aliphatic olefins, as well as to functionalized or unfunctionalized acyclic compounds, providing the corresponding ketones and aldehydes in up to 98% yield. The synthetic interest of this catalytic oxidation was illustrated by a one-step preparation of the fragrance (-)-4-acetyl-1-methylcyclohexene 7e in 73% isolated yield. The C=C bond cleavage probably results from a catalyzed decomposition of the beta-hydroperoxysulfide intermediate 12 that is formed by the radical addition of thiophenol to the olefin in the presence of oxygen. Although an excess of the thiophenol was used, it was transformed into the disulfide which could then be reduced without purification in 83% overall yield, thereby allowing for recycling. In addition, the C=C bond cleavage under oxygen could be promoted by catalytic quantities of the thiyl radical, generated by photolysis of the disulfide; thus, in the presence of 0.1 equiv of bis(4-chlorophenyl) disulfide 4b and 5% of the manganese complex 3a, trans-methylstilbene 1b gave, under radiation, benzaldehyde 6a and acetophenone 7a in up to 95% yield. This new reaction offers an alternative to the classical C=C bond cleavage procedures, and further developments in the fields of bioinorganic and environmental chemistry are likely.  相似文献   

12.
CoH(N2)(PPh3)3 promotes carbon–oxygen (C? O) bond cleavage in allylic carboxylates to give the corresponding olefins at room temperature. On the other hand, RuH2(PPh3)4 and RhH(PPh3)4 are mainly active for C? O bond cleavage at elevated temperature. Reaction proceeds through a mechanism involving predissociation of one of the tertiary phosphines from the RuH2(PPh3)4 and RhH(PPh3)4 and competitive coordination of allylic carboxylates and PPh3 to the vacant site on ruthenium and rhodium. A new six-membered metallocyclic complex, Co(OCOCH2COCH3)(PPh3)2, has been isolated.  相似文献   

13.
Reduction of dehydronerolidol with lithium aluminum hydride in the presence of sodium methoxide gave, in addition to the expected nerolidol, geranyl acetone. Labeling experiments established that the C-1 methyl of geranyl acetone is derived from one of the carbons of the acetylene.  相似文献   

14.
Desulfurization of N,N-dimethylthioformamide (Me(2)NCHS) by hydrosilane has been achieved under photo irradiation in the presence of a methyl iron complex. The reaction sequences have been proposed, in which silyl migration from Fe to S of thioformamide triggers the cleavage of a C=S bond to give a carbene-iron complex. This intermediate was isolated and characterized by X-ray analysis.  相似文献   

15.
The synthesis and structure of a novel beta-diketiminato Co(I) arene adduct [Me2NN]Co(eta6-toluene) (2) are described, that serves as a synthon to the reactive, "naked" 12-electron [Me2NN]Co fragment via loss of toluene in its reactions with dioxygen, organoazides, and a nitrosobenzene. Exposure of 2 to dioxygen in ether leads to {[Me2NN]Co}2(mu-O)2 (3), a rare example of a cobalt-oxo complex thermally stable at room temperature. The X-ray structure of 3 reveals a short Co-Co separation of 2.716(4) A and exhibits positional disorder for the bridging oxo groups; the predominant configuration contains oxygen atoms in square-planar sites with short Co-O distances (1.784(3) and 1.793(4) A). Reaction of 2 with organoazides N3R (R = 3,5-Me2C6H3 (Ar) or 1-adamantyl (Ad)) results in the formation of imido complexes whose structure depends on the nature of the azido substituent. The synthesis and structures of both {Me2NN]Co}2(mu-NAr)2 (4) with arylimido groups in tetrahedral bridging sites or the three-coordinate, 16-electron [Me2NN]CoNAd (5) are described. The X-ray structure of terminal imide 5 reveals a short Co-N bond distance (1.624(4) A) and only somewhat bent imido linkage (Co-N-C = 161.5(3) degrees ) consistent with a significant degree of multiple bond character. Complex 2 cleaves the O=N bond of the nitrosobenzene O=NAr (Ar = 3,5-Me2C6H3) to form the binuclear oxo-imido complex {[Me2NN]Co}2(mu-O)(mu-NAr) (6) that possesses a structure intermediate between square-planar 3 and tetrahedral 4 in which the [Me2NN]Co fragments are mutually orthogonal.  相似文献   

16.
The conformational and internal energy barriers for rotation of the phenylazo group in azobilirubin pigments were determined by the PCILO method. The calculations showed a restricted rotation of the azo group at 180–300° dihedral angle.  相似文献   

17.
Irradiation of an azo-propellane derivative in which an olefinic bond is proximate to the azo group forms a cage compound containing a 1,2-diazacyclobutane ring.  相似文献   

18.
19.
20.
Carbonylation of the hafnocene dinitrogen complex, [Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-(t)Bu)Hf](2)(μ(2), η(2), η(2)-N(2)), yields the corresponding hafnocene oxamidide compound, arising from N(2) cleavage with concomitant C-C and C-N bond formation. Monitoring the addition of 4 atm of CO by NMR spectroscopy allowed observation of an intermediate hafnocene complex with terminal and bridging isocyanates and a terminal carbonyl. (13)C labeling studies revealed that the carbonyl is the most substitutionally labile ligand in the intermediate and that N-C bond formation in the bridging isocyanate is reversible. No exchange was observed with the terminal isocyanate. Kinetic data established that the conversion of the intermediate to the hafnocene oxamidide was not appreciably inhibited by carbon monoxide and support a pathway involving rate-determining C-C coupling of the isocyanate ligands. Addition of methyl iodide to the intermediate hafnocene resulted in additional carbon-carbon bond formation arising from CO homologation following nitrogen methylation. Similar reactivity with (t)BuNCO was observed where C-C coupling occurred upon cycloaddition of the heterocumulene. By contrast, treatment of the intermediate hafnocene with CO(2) resulted in formation of a μ-oxo hafnocene with two terminal isocyanate ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号