首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of the compound K2[(UO2)4(O)2(OH)2(C2O4)(CH3COO)2(H2O)2]·2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Crystals of compound I belong to the triclinic system with the unit cell parameters a = 7.6777(6) ?, b = 7.9149(7) ?, c = 10.8729(9) ?, α = 72.379(2)°, β = 86.430(3)°, γ = 87.635(2)°, V = 628.33(9) ?3, space group P , Z = 1, and R 1 = 0.0323. The main structural units of the crystals are [(UO2)4(O)2(OH)2(C2O4)(CH3COO)2(H2O)2]2− chains, which belong to the crystal-chemical group A 4 M 23 M 22 K 02 B 201 M 21 (A = UO22+, M 3 = O2−, M 2 = OH, K 02 = C2O42−, B 01 = CH3COO, M 1 = H2O) of the uranyl complexes. The chains are formed by linking the centrosymmetric tetramers of the composition (UO2)4(O)2(OH)2(CH3COO)2(H2O)2 via tetradentate bridging oxalate ions. The uranium-containing groups are joined into a three-dimensional framework through the electrostatic interaction with potassium cations and a system of hydrogen bonds, which are formed with the participation of atoms involved in the composition of the water molecules, hydroxide ions, and uranyl ions. Original Russian Text ? L.B. Serezhkina, A.V. Vologzhanina, N.A. Neklyudova, V.N. Serezhkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 3, pp. 483–487.  相似文献   

2.
Single crystals of the compound K8[(UO2)2(C2O4)2(SeO4)4] · 2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 14.9290(4) ?, b = 7.2800(2) ?, c = 15.3165(4) ?, β = 109.188(1)°, V = 1572.17(7) ?3, space group P21/n, Z = 2, and R = 0.0297. The uranium-containing structural units of crystals I are dimers of the composition [(UO 2)2(C2O4)2(SeO4)4]8−, which belong to the crystal-chemical group AB 01 B 2 M 1 (A = UO22+, B 01 = C2O42−, B 2 = SeO42−, M 1 = SeO42−) of the uranyl complexes. The [(UO2)2(C2O4)2(SeO4)4]8− dimers are joined into a three-dimensional framework through electrostatic interactions with the outer-sphere potassium cations. Original Russian Text ? L.B. Serezhkina, E.V. Peresypkina, A.V. Virovets, A.G. Verevkin, D.V. Pushkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 1, pp. 68–71.  相似文献   

3.
Three Sr2+ compounds with the Edta 4− and H2 Edta 2− ligands—Sr2(Edta) · 5H2O (I), Sr2(H2 Edta)(HCO3)2 · 4H2O (II), and Sr2(H2 Edta)Cl2 · 5H2O (III)—are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta 4− ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with three O atoms of the Edta 4− ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)–2.656(3) and 2.527(3)–2.683(2) ?, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) ? long. In II and III, the H2 Edta 2− anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H2 Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H2 Edta 2− ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)–2.732(2) and 2.482(2)–2.746(3) ?, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) ?, respectively. In II, all the structural elements are linked into wavy layers. The O-H…O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr2+ cations and H2 Edta anions form a three-dimensional [Sr2(H2 Edta)(H2O)3] n 2n+ framework. The Cl anions are fixed in channels of the framework by hydrogen bonds with four water molecules. In II and III, the N-H groups form four-center N-H…O3 hydrogen bonds, which include one intermolecular and two intramolecular components. PACS numbers: 61.66.Hq Original Russian Text ? I.N. Polyakova, A.L. Poznyak, V.S. Sergienko, 2009, published in Kristallografiya, 2009, Vol. 54, No. 2, pp. 262–267.  相似文献   

4.
Single crystals of the compound {NH2(C2H5)2}2[(UO2)2C2O4(CH3COO)4] · 2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 9.210(2) ?, b = 14.321(3) ?, c = 12.659(3) ?, β = 105.465(13)°, V = 1609.2(6) ?3, space group P21/c, Z = 2, and R = 0.0198. The structural units of crystals I are binuclear groups of the composition [(UO2)2C2O4(CH3COO)4]2− with an island structure, which belong to the crystal-chemical group A 2 K 02 B 401 (A = UO22+, K 02 = C2O42−, B 01 = CH3COO) of the uranyl complexes, diethylammonium cations, and water molecules. The uranium-containing groups are joined into a three-dimensional framework through electrostatic interactions with diethylammonium cations and a system of hydrogen bonds, which are formed with the participation of the atoms involved in the composition of the water molecules, oxalate ions, acetate ions, and diethylammonium cations. Original Russian Text ? L.B. Serezhkina, A.V. Vologzhanina, N.A. Neklyudova, V.N. Serezhkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 1, pp. 65–67.  相似文献   

5.
Abstract  The mononuclear complex [Na(C7H6O4)(H2O)3](C7H5O4) · 2H2O has been synthesized and characterized by IR, single crystal X-ray and thermal analysis. The compound crystallizes in the monoclinic space group P21 with a = 3.623(2) ?, b = 15.872(6) ?, c = 15.650(5) ?, β = 93.13(4)°, V = 896.6(7) ?3 and Z = 2. The central sodium ion is six coordinated with distorted octahedral geometry by two oxygen atoms from two bridging 3,5-dihydroxybenzoate ligands and four ones from different water molecules. The notable feature of the title complex is the formation of a three-dimensional network, through the combination of coordination bonds, hydrogen bonds and π···π interactions. There are one-dimensional channels in the structure, filled in by water molecules. The compound dehydrates in the temperature range of 70–125 °C and then is stable up to 230 °C. Index Abstract  The mononuclear complex [Na(C7H6O4)(H2O)3](C7H5O4) · 2H2O has been synthesized and characterized by IR, single crystal X-ray and thermal analysis.   相似文献   

6.

Abstract  

Hydrazinium complexes of Ce(III) and Eu(III) ethylenediaminetetra-acetate hydrates have been synthesized in aqueous solution and characterized by hydrazine and metal analyses, elemental analysis, infrared spectra, X-ray power diffraction and single crystal X-ray diffraction techniques. The CeIIIN2O7 parts in the complex anion has a pseudomono-capped square antiprismatic nine-coordinate structure, in which the six coordinated atoms (two N and four O) from the ethylenediaminetetraacetate ion and three water molecules are coordinated to the central rare earth metal ion directly. The EuIIIN2O7 part in the complex anion has the same structure as CeIIIN2O7 part. The crystal of the cerium complex belongs to the orthorhombic crystal system and Fdd2 space group. The crystal data are the follows: a = 19.7281(7) ?, b = 35.7790(11) ?, c = 12.3244(4) ?, α = β =γ = 90°, V = 8699.2(5) ?3. The final R and Rw are 0.020 and 0.0589 for with I > 2σ (I) and 3,842 reflections, respectively. The crystal of the europium complex is isostructural with the cerium complex. The crystal data of europium complex are: a = 19.7281(7) ?, b = 35.7790(11) ?, c = 12.3244(4) ?, α = β =γ = 90°, V = 8699.2(5) ?3. The final R and Rw are 0.0252 and 0.687 for with I > 2σ (I) and 3,842 reflections, respectively. The X-ray powder diffraction patterns and infrared spectra of the complex are super imposable indicating their structural similarity.  相似文献   

7.
Single crystals of the compounds (C3N6 H7)4(CN3H6)2[UO2(CrO4)4] · 4H2O (I) and (H3O)6[UO2(CrO4)4] (II) are synthesized, and their structures are investigated using X-ray diffraction. Compound I crystallizes in the triclinic system with the unit cell parameters a = 6.3951(8) ?, b = 10.8187(16) ?, c = 16.9709(18) ?, α = 93.674(4)°, β = 97.127(4)°, γ = 92.020(4)°, space group, P Z = 1, V = 1161.6(3) ?3, and R = 0.0470. Crystals of compound II belong to the monoclinic system with the unit cell parameters a = 14.3158(4) ?, b = 11.7477(3) ?, c = 13.1351(4) ?, β= 105.836(1)°, space group C2/c, Z = 4, V = 2125.2(1) ?3, and R = 0.0213. The uranium-containing structural units of crystals I and II are mononuclear anionic complexes of the composition [UO2(CrO4)4]6− with an island structure, which belong to the crystal-chemical group Am 14 (A = UO2+2, M 1 = CrO2−4) of the uranyl complexes. The [UO2(CrO4)4]6− anionic complexes are joined into a three-dimensional framework through the electrostatic interactions with outer-sphere cations and a system of hydrogen bonds. Original Russian Text ? L.B. Serezhkina, E.V. Peresypkina, A.V. Virovets, A.G. Verevkin, D.V. Pushkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 2, pp. 284–290.  相似文献   

8.
[NH3(CH2)3NH3]2[Ni(HP2O7)2(H2O)2] 4H2O (NiDAP) is a new diphosphate of transition metallic and organic cations obtained from a mixture of H4P2O7, 2NiCO3 Ni(OH)2 4H2O and NH2(CH2)3NH2 in a 1:1/6:1 molar ratio. This mixed organo-mineral compound crystallizes in the triclinic system, P¯, with the unit cell dimensions: a = 7.3678(3)~Å, b = 7.8018(5)Å, c = 11.1958(7)Å, = 76.914(4), = 81.052(4), = 85.46(1), V = 618.57(6)Å3 and Z = 1. The crystal structure of NiDAP consists of a complex anion, [Ni(HP2O7)2(H2O)2]4– and a diammoniumpropane cation. The complex anion is built up from two neutral water molecules (OW1) and two diphosphosphoric anions coordinated to Ni(II) in a bidentate chelating manner. (OW1) molecules link anionic complexes, [Ni(HP2O7)2(H2O)2]4– to create a thick bidimensional layers parallel to the (a, b) plane. These layers are interconnected in three dimensions through hydrogen bonds established between organic cations, the remaining water molecules OW2, OW3, and some external oxygen atoms of the anionic complex arrays. NiDAP was also characterized by IR spectroscopy, TG-DTA, and DSC analyses.  相似文献   

9.

Abstract  

The crystal structures of two zinc(II) 4-chloro- and 5-chlorosalicylate complexes, [Zn(4-ClC6H3-2-(OH)COO)2(H2O)4]·2tph·(H2O)2 (I) and [Zn(5-ClC6H3-2-(OH)COO)2(ina)2(H2O)] (II), where tph is theophylline and ina is isonicotinamide, have been determined using X-ray diffraction methods. Crystals of both (I) and (II) are triclinic, space group P-1, with Z = 1 in a cell with a = 7.2220(3), b = 8.59700(10), c = 16.0210(5) ?, α = 75.990(2), β = 83.959(2), γ = 68.455(2)°, V = 897.54(5) ?3 (I) and with Z = 2 in a cell with a = 11.4148(11), b = 11.5327(10), c = 12.0685(13) ?, α = 63.458(6), β = 87.547(8), γ = 89.387(7)°, V = 1419.9(2) ?3 (II). The coordination environment of the zinc(II) atom of compound (I) consists of two unidentate carboxylate oxygen atoms and four oxygen atoms of aqua ligands, forming a distorted octahedral configuration. Two theophylline molecules and the remaining water molecules are bound only by hydrogen bonds. The Zn atom of compound (II) is pentacoordinated with two unidentate carboxylate oxygen atoms, two pyridine nitrogen atoms of isonicotinamide ligands, and the oxygen atom of the aqua ligand, forming a distorted configuration between square pyramid and trigonal bipyramid. In both complexes intramolecular O–H···O hydrogen-bonding interactions are present. In the crystal structures, molecules are linked by intermolecular O–H···O and N–H···O hydrogen bonds. The structures are analyzed and compared to the similar Zn(II) complexes, with the chromophores ZnO6 and ZnO3N2.  相似文献   

10.

Abstract  

Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2(H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) ?, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) ?, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon.  相似文献   

11.
Compounds K2[UO2(C3H2O4)2] · H2O (I) and Rb2[UO2(C3H2O4)2] · H2O (II) are synthesized and their crystal structures are determined by X-ray diffraction. The compounds crystallize in the monoclinic crystal system; for I, a = 7.1700(2) ?, b =12.3061(3) ?, c = 14.3080(4) ?, β = 95.831(2)°, space group P21/n, Z = 4, and R = 0.0275; for II, a = 7.1197(2) ?, b = 12.6433(4) ?, c = 14.6729(6) ?, β = 96.353(2)°, space group P21/n, Z = 4, and R = 0.0328. It is found that I and II are isostructural. The main structural units of the crystals are the [UO2(C3H2O4)2]2− chains, which belong to the AT 11 B 01 (A = UO22+, T 11, and B 01 = C3H2O42−) crystal chemical group of uranyl complexes. The chains and alkali metal ions R (R = K or Rb) are connected by electrostatic interactions and hydrogen bonds. Some specific structural features of [UO2(C3H2O4)2]2− complex groups are discussed.  相似文献   

12.
The K2Co(SO4)2 · 6H2O-K2Ni(SO4)2 · 6H2O system has been studied, and a series of K2Ni(SO4)2 · 6H2O/K2Co(SO4)2 · 6H2O bicrystals have been grown. The processes of defect formation at the substrate/layer interface K2Co(SO4)2 · 6H2O/K2Ni(SO4)2 · 6H2O are studied by probe microanalysis, X-ray topography, and optical microscopy. It is found that inclusions and threading dislocations are formed at the interface, due to which elastic stresses relax in the crystal. Nickel is nonuniformly distributed in the layer; its concentration decreases with an increase in the layer thickness, which is indicative of substrate dissolution in the initial stage of interaction. A way for the elastic mismatch stresses to relax in heterostructures of brittle crystals obtained from solutions at low temperatures is proposed which implies the formation of inclusions at the substrate/layer interface. Original Russian Text ? M.S. Grigor’eva, A.é. Voloshin, E.B. Rudneva, V.L. Manomenova, S.N. Khakhanov, V.Ya. Shklover, 2009, published in Kristallografiya, 2009, Vol. 54, No. 4, pp. 679–687.  相似文献   

13.
The new families of aluminate glasses obtained by the present authors from their melts in the systems K2O–Ta2O5–Al2O3, Na2O–K2O–Ta2O5–Al2O3, K2O –Cs2O– Ta2O5–Al2O3, K2O–Nb2O5–Al2O3, Na2Oz.sbnd;K2O–TiO2–Al2O3, BaO–TiO2–Al2O3, BaO–ZrO2–TiO2–Al2O3 and Na2O–K2O–BaO–ZrO2–Ta2O5–TiO2 –Al2O3 showed high transmissions of visible and infrared (IR) radiation ranging from 0.4 to about 6 μm, as well as high refractive indices up to 2.0. Their physical and chemical properties such as glass-forming ability, softening temperature, hardness and hygroscopicity were comparable to conventional silicate glasses. These properties are useful for IR applications. The cause of the high IR transmission of the aluminate glasses was interpreted in terms of the masses of the constituent cations and the single bond strengths of the cations with oxygen ions.  相似文献   

14.
Abstract  The compound investigated in this study contains a novel centrosymmetric heteroanion [Zn2V10O28(H2O)10]2−. This cluster results from the connection between a V10O28 group and two Zn(2)O(OH2)5 octahedra. The Zn(1)O6 octahedron and three water molecules associated with it are located between the different layers. The [Zn(H2O)6][Zn2V10O28(H2O)10] · 6H2O compound belongs to P-1 space group, with a = 8.967(2) ?, b = 10.390(4) ?, c = 12.338(13) ?, α = 108.31(7)°, β = 100.68(7)°, γ = 103.00(3)°, V = 1022(1) ?3 and Z = 1. Refinement gave R = 0.035 and wR(F2) = 0.098 for 3837 unique observed reflexions [I > 2σ(I)]. Index Abstract  The compound investigated in this study contains a novel centrosymmetric heteroanion [Zn2V10O28(H2O)10]2−. This cluster results from the connection between a V10O28 group and two Zn(2)O(OH2)5 octahedra.   相似文献   

15.
Abstract  A novel polyoxometalate compound consisting of Anderson-type anions and trivalent lanthanide cations, [Er2(H2O)14Cr(OH)6Mo6O18][Cr(OH)6Mo6O18]·14H2O (1), has been synthesized in aqueous solution and characterized by single crystal X-ray diffraction, elemental analyses, IR spectrum and TG analyses. Single crystal X-ray diffraction reveals that compound 1 crystallizes in the triclinic space group P-1 with a = 11.046 (5) ?, b = 11.653 (5) ?, c = 13.935 (5) ?, α = 75.006 (5)°, β = 84.497(5)°, γ = 89.515(5)°. The bulk ions of compound 1 in the cell unit exhibit orthorhombic C-centered packing mode, the eight [Cr(2)(OH)6Mo6O18]3− anions occupy the eight corners and the two [Er2(H2O)14Cr(OH)6Mo6O18]3+ cations occupy the centres of two opposite faces, whereas anions and cations are linked together via hydrogen bonding interactions tightly forming a three-dimensional supramolecular architecture, which contains one-dimensional channels occupied by free water molecules. Index Abstract  The bulk ions of compound 1 in the cell unit exhibit orthorhombic C-centered packing mode, the eight [Cr(2)(OH)6Mo6O18]3− anions occupy the eight corners and the two [Er2(H2O)14Cr(OH)6Mo6O18]3+ cations occupy the centres of two opposite faces, whereas anions and cations are linked together via hydrogen bonding interactions tightly forming a three-dimensional supramolecular architecture, which contains one-dimensional channels occupied by free water molecules. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.

Abstract  

The novel dimeric manganese-substituted polyoxotungstate Na10[(α-B-ZnW9O34)2W2Mn2(H2O)2](OH)2·34H2O (1) has been designed and synthesized from the hydrothermal reaction of Na2WO4·2H2O, MnCl2·4H2O, and ZnCl2 in a Teflon-lined stainless steel autoclave at 140°. X-ray diffraction analysis results reveal that compound (1) crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.0901(3) ?, b = 17.8242(4) ?, c = 21.2401(5) ?, β = 93.6380(10)°, Z = 1, V = 4945.8(2) ?3, F(000) = 5244, Dc = 3.974 g/cm−3, μ(Mo-Kα) = 2.4037 cm−1, λ(Mo-Kα) = 0.71073 ?. The structure was refined to R = 0.0631 and wR = 0.1532. The polyoxoanion of [(α-B-ZnW9O34)2W2Mn2(H2O)2]8− consist of two Keggin lacunary α-B-ZnW9O34 12− moieties linked via a rhomblike W2Mn2O16 group leading to a sandwich-type structure.  相似文献   

17.

Abstract  

The zinc(II) and cadmium(II) 2,4-dichlorophenoxyacetate salts were synthesized in mixed water–methanol environment and characterized by elemental analysis, IR spectrometry and thermal analysis coupled with mass spectrometry. The crystal structures were determined by X-ray crystallography (compound 1, [C18H18Cl4O8Zn] n : monoclinic, P21/c, a = 19.094, b = 7.378, c = 8.008, α = 90.00, β = 101.134, γ = 90.00, V = 1106.95; compound 2, [C16H14Cl4O8Cd] n : monoclinic, P21/c, a = 17.730, b = 7.293, c = 8.060, α = 90.00, β = 95.18, γ = 90.00, V = 1037.9). The structural and some thermal data about the presented cadmium salt were previously reported (Song et al. Acta Crystallogr E 62:m2397, 2006; Kobylecka et al. Thermochim Acta 482:49, 2009).  相似文献   

18.

Abstract  

Two ligand isomers [Zn{4-ClC6H3-2-(OH)COO}2(Menia)2(H2O)2] (I) and [Zn{5-ClC6H3-2-(OH)COO}2(Menia)2(H2O)2] (II) (Menia = N-methylnicotinamide) were prepared and characterized by elemental analysis, IR spectroscopy and thermal analysis. The X-ray crystal structures of complexes (I) and (II) were determined. Compound (I) crystallizes in the triclinic space group P[`1] P\bar{1} with a = 8.105(1) ?, b = 10.036(2) ?, c = 10.545(2) ?, α = 109.088(9)°, β = 91.416(8)°, γ = 102.757(9)°, V = 786.2(2) ?3, Z = 1. Compound (II) crystallizes in the triclinic space group P[`1] P\bar{1} . Its cell parameters are: a = 8.133(1) ?, b = 10.119(2) ?, c = 10.428(1) ?, α = 66.44(1)°, β = 74.32(1)°, γ = 80.16(1)°, V = 755.5(2) ?3, Z = 1. The molecular structure of both isomers is monomeric. Each Zn(II) atom is hexacoordinated by three pairs of unidentate ligands in trans-positions (ZnO4N2). The 5-Clsal complex is somewhat less distorted than 4-Clsal complex (Cl-sal = chlorosalicylate). The structural data are compared with those found in similar [Zn(RCOO)2(NL)2(H2O)2].  相似文献   

19.

Abstract  

The title complex {[Yb(1,4-BDC)1.5(H2O)4]·H2O}n (1) (1,4-BDC = 1,4-benzenedicarboxylate) has been hydrothermally synthesized and structurally characterized by the single crystal X-ray diffraction. Crystals of compound 1 belongs to the triclinic crystal system, space group P-1; a = 7.549(3) ?, b = 10.072(4) ?, c = 10.470(4) ?, α = 87.810(4)°, β = 82.531(4)°, γ = 86.306(4)°, V = 787.3(5) ?3, Z = 2. The Yb(III) atoms are linked by the deprotonated 1,4-BDC ligands in two kinds of bridging modes. Four Yb(III) atoms at each corner (nodes) and four 1,4-BDC ligands at each edge (spacers) form a edge–sharing 36-membered rings. The rhombohedral Yb4(1,4-BDC)4 arranged in an alternating fashion to construct a 1D ladder-like chain along the c axis. Two neighboring chains are linked to each other in a parallel fashion to construct 3D supramolecular structure by O–H···O hydrogen bonds and ππ stacking interactions. In addition, the properties of thermogravimetric analysis and magnetic behaviors of the complex have been also discussed.  相似文献   

20.
A new zinc(II) pyrophosphate, Zn4(P2O7)2 < eqid1 > 10H2O, has been synthesized and characterized by single-crystal X-ray diffraction [orthorhombic space group Pnma, with unit cell parameters of a = 9.1508(2) A, b = 25.5271(5) Å, c = 8.3574(2) Å, Z = 4]. All the pyrophosphate anions show nonlinear P–O–P bonds with an average angle of 126.5. The framework of this new pyrophosphate is made up of packed layers of ZnO6 octahedra connected by double-tetrahedra P2O7 groups and a layer of Zn(H2O)6 units. The [P2O7]4– anions adopt a bent, near-staggered conformation. The absence of coincidences for the majority of the IR and Raman bands is in accord with the centrosymmetric structure of the material. The vibrational spectra have been interpreted in part on the basis of factor group effects. The structural changes occurring during heating have been investigated by TG-DSC, powder X-ray diffraction, and IR and Raman spectroscopy. When Zn4(P2O7)2 10H2O is gradually heated, it decomposes and -Zn2P2O7 is formed at 481C. On further heating, -Zn2P2O7 is transformed into -Zn2P2O7 at 750C. The conversion between the and -Zn2P2O7 forms is irreversible and, on cooling -Zn2P2O7 to room temperature, it reverts back to -Zn2P2O7. The crystal structure of the new zinc(II) pyrophosphate material is compared with the known structures of the related anhydrous products -, -, and -Zn2P2O7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号