首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report results of a search for light (?10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42) cm(2), for a dark matter particle mass m(χ)=7 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.  相似文献   

2.
Dedicated underground experiments searching for dark matter have little sensitivity to GeV and sub-GeV masses of dark matter particles. We show that the decay of B mesons to K(K(*)) and missing energy in the final state can be an efficient probe of dark matter models in this mass range. We analyze the minimal scalar dark matter model to show that the width of the decay mode with two dark matter scalars B-->KSS may exceed the decay width in the standard model channel, B-->Knunu , by up to 2 orders of magnitude. Existing data from B physics experiments almost entirely exclude dark matter scalars with masses less than 1 GeV. Expected data from B factories probe the range of dark matter masses up to 2 GeV.  相似文献   

3.
WIMPless dark matter provides a framework in which dark matter particles with a wide range of masses naturally have the correct thermal relic density. We show that WIMPless dark matter with mass around 2–10 GeV can explain the annual modulation observed by the DAMA experiment without violating the constraints of other dark matter searches. This explanation implies distinctive and promising signals for other direct detection experiments, GLAST, and the LHC.  相似文献   

4.
The inelastic dark matter scenario was proposed to reconcile the DAMA annual modulation with null results from other experiments. In this scenario, weakly interacting massive particles (WIMPs) scatter into an excited state, split from the ground state by an energy δ comparable to the available kinetic energy of a galactic WIMP. We note that for large splittings δ the dominant scattering at DAMA can occur off of thallium nuclei, with A~205, which are present as a dopant at the 10(-3) level in NaI(Tl) crystals. For a WIMP mass mχ≈100 GeV/c2 and δ≈200 keV, we find a region in δ-mχ-parameter space which is consistent with all experiments. These parameters, in particular, can be probed in experiments with thallium in their targets, such as KIMS, but are inaccessible to lighter target experiments. Depending on the tail of the WIMP velocity distribution, a highly modulated signal may or may not appear at CRESST-II.  相似文献   

5.
We show that fermionic dark matter (DM) which communicates with the Standard Model (SM) via the Higgs portal is a viable scenario, even if a SM-like Higgs is found at around 125 GeV. Using effective field theory we show that for DM with a mass in the range from about 60 GeV to 2 TeV the Higgs portal needs to be parity violating in order to be in agreement with direct detection searches. For parity conserving interactions we identify two distinct options that remain viable: a resonant Higgs portal, and an indirect Higgs portal. We illustrate both possibilities using a simple renormalizable toy model.  相似文献   

6.
We show that light (approximately or = 1-30 MeV) dark matter particles can play a significant role in core-collapse supernovae, if they have relatively large annihilation and scattering cross sections, as compared to neutrinos. We find that if such particles are lighter than approximately or = 10 MeV and reproduce the observed dark matter relic density, supernovae would cool on a much longer time scale and would emit neutrinos with significantly smaller energies than in the standard scenario, in disagreement with observations. This constraint may be avoided, however, in certain situations for which the neutrino-dark-matter scattering cross sections remain comparatively small.  相似文献   

7.
For the experimental search of neutralino dark matter, it is important to know its allowed mass and scattering cross section with the nucleon. In order to figure out how light a neutralino dark matter can be predicted in low energy supersymmetry, we scan over the parameter space of the NMSSM (next-to-minimal supersymmetric model), assuming all the relevant soft mass parameters to be below TeV scale. We find that in the parameter space allowed by current experiments the neutralino dark matter can be as light as a few GeV and its scattering rate off the nucleon can reach the sensitivity of XENON100 and CoGeNT. As a result, a sizable parameter space is excluded by the current XENON100 and CoGeNT data (the plausible CoGeNT dark matter signal can also be explained). The future 6000 kg-days exposure of XENON100 will further explore (but cannot completely cover) the remained parameter space. Moreover, we find that in such a light dark matter scenario a light CP-even or CP-odd Higgs boson must be present to satisfy the measured dark matter relic density. Consequently, the SM-like Higgs boson hSM may decay predominantly into a pair of light Higgs bosons or a pair of neutralinos so that the conventional decays like hSM→γγ is much suppressed.  相似文献   

8.
We study the effects of feebly or nonannihilating weakly interacting dark matter (DM) particles on stars that live in DM environments denser than that of our Sun. We find that the energy transport mechanism induced by DM particles can produce unusual conditions in the cores of main sequence stars, with effects which can potentially be used to probe DM properties. We find that solar mass stars placed in DM densities of ρ(χ)≥10(2) GeV/cm(3) are sensitive to spin-dependent scattering cross section σ(SD)≥10(-37) cm(2) and a DM particle mass as low as m(χ)=5 GeV, accessing a parameter range weakly constrained by current direct detection experiments.  相似文献   

9.
We show that the standard-model Higgs boson mass mh is correlated with the spectral index of density perturbation ns in the inflation scenario with the inflaton being identified with the B-L Higgs boson. The Higgs boson mass ranges from mh?120 GeV to 140 GeV for ns?0.95-0.96. In particular, as ns approaches to 0.96, the Higgs mass is predicted to be in the range of 125 GeV to 140 GeV in the case of relatively light gauginos, and 120 GeV to 135 GeV in the case where all SUSY particle masses are of the same order. This will be tested soon by the LHC experiment and the Planck satellite. The relation is due to the PeV-scale supersymmetry required by the inflationary dynamics. We also comment on the cosmological implications of our scenario such as non-thermal leptogenesis and dark matter.  相似文献   

10.
We study the implications of a scalar bottom quark, with a mass of O (5 GeV), within the minimal supersymmetric standard model. Light sbottoms may naturally appear for large tan(beta) and, depending on the decay modes, may have escaped experimental detection. We show that a light sbottom cannot be ruled out by electroweak precision data and the bound on the lightest CP-even Higgs-boson mass. We infer that a light b scenario requires a relatively light scalar top quark whose mass is typically about the top-quark mass. In this scenario the lightest Higgs boson decays predominantly into b pairs and obeys the mass bound m(h) less, similar 123 GeV.  相似文献   

11.
Cosmological models with cold dark matter composed of weakly interacting particles predict overly dense cores in the centers of galaxies and clusters and an overly large number of halos within the Local Group compared to actual observations. We propose that the conflict can be resolved if the cold dark matter particles are self-interacting with a large scattering cross section but negligible annihilation or dissipation. In this scenario, astronomical observations may enable us to study dark matter properties that are inaccessible in the laboratory.  相似文献   

12.
We present a search for a new particle T' decaying to top quark via T' → t + X, where X is an invisible particle. In a data sample with 4.8 fb(-1) of integrated luminosity collected by the CDF II detector at Fermilab in pp collisions with √s = 1.96 TeV, we search for pair production of T' in the lepton + jets channel, pp → tt + X + X → ?νbqq'b + X + X. We interpret our results primarily in terms of a model where T' are exotic fourth generation quarks and X are dark matter particles. Current direct and indirect bounds on such exotic quarks restrict their masses to be between 300 and 600 GeV/c2, the dark matter particle mass being anywhere below m(T'). The data are consistent with standard model expectations, and we set 95% confidence level limits on the generic production of T'T' → tt + X + X. For the dark matter model we exclude T' at 95% confidence level up to m(T') = 360 GeV/c2 for m(X) ≤ 100 GeV/c2.  相似文献   

13.
Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating dark matter. We present new limits on the annihilation cross section of weakly interacting massive particles based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction and Pass 7 data from the Fermi Gamma-Ray Space Telescope. We exclude generic weakly interacting massive particle candidates annihilating into bb with a mass less than 40 GeV that reproduce the observed relic abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into τ+ τ-, these limits become 19, 13, and 80 GeV, respectively.  相似文献   

14.
Neutralino dark matter is well motivated, but also suffers from two shortcomings: it requires gravity-mediated supersymmetry breaking, which generically violates flavor constraints, and its thermal relic density Omega is typically too large. We propose a simple solution to both problems: neutralinos freeze-out with Omega approximately 10-100, but then decay to approximately 1 GeV gravitinos, which are simultaneously light enough to satisfy flavor constraints and heavy enough to be all of dark matter. This scenario is naturally realized in high-scale gauge-mediation models, ameliorates small scale structure problems, and implies that "cosmologically excluded" models may, in fact, be cosmologically preferred.  相似文献   

15.
The dark matter in the Universe might be composed of superheavy particles (mass greater, similar 10(10) GeV). These particles can be detected via nuclear recoils produced in elastic scatterings from nuclei. We estimate the observable rate of strongly interacting supermassive particles (simpzillas) in direct dark matter search experiments. The simpzilla energy loss in Earth and in the experimental shields is taken into account. The most natural scenarios for simpzillas are ruled out based on recent EDELWEISS and CDMS results. The dark matter can be composed of superheavy particles only if these interact weakly with normal matter or if their mass is above 10(15) GeV.  相似文献   

16.
We study the possibility of the existence of extra fermion families and an extra Higgs doublet. We find that requiring the extra Higgs doublet to be inert leaves space for three extra families, allowing for mirror fermion families and a dark matter candidate at the same time. The emerging scenario is very predictive: It consists of a standard model Higgs boson, with a mass above 400 GeV, heavy new quarks between 340 and 500 GeV, light extra neutral leptons, and an inert scalar with a mass below M(Z).  相似文献   

17.
The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on $B^{0}_{s}\to \mu^{+}\mu^{-}$ (LHCb experiment), the relic density (WMAP and other cosmological data) and upper limits on the dark matter scattering cross sections on nuclei (XENON100 data). The excluded regions in the constrained Minimal Supersymmetric SM (CMSSM) lead to gluinos excluded below 1270 GeV and dark matter candidates below 220 GeV for values of the scalar masses (m 0) below 1500 GeV. For large m 0 values the limits of the gluinos and the dark matter candidate are reduced to 970 GeV and 130 GeV, respectively. If a Higgs mass of 125 GeV is imposed in the fit, the preferred SUSY region is above this excluded region, but the size of the preferred region is strongly dependent on the assumed theoretical error.  相似文献   

18.
We search for single-photon decays of the Υ(1S) resonance, Υ → γ + invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A?, or a pair of dark matter particles, χχ. Both A? and χ are assumed to have zero spin. We tag Υ(1S) decays with a dipion transition Υ(2S) → π?π?Υ(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range m(A?) ≤ 9.2 GeV and m(χ) ≤ 4.5 GeV in the sample of 98 × 10? Υ(2S) decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states.  相似文献   

19.
We study the capabilities of the Fermi-LAT instrument on board of the Fermi mission to constrain particle dark matter properties, as annihilation cross section, mass and branching ratio into dominant annihilation channels, with gamma-ray observations from the Galactic Center. Besides the prompt gamma-ray flux, we also take into account the contribution from the electrons/positrons produced in dark matter annihilations to the gamma-ray signal via inverse Compton scattering off the interstellar photon background, which turns out to be crucial in the case of dark matter annihilations into μ+μ and e+e pairs. We study the signal dependence on different parameters like the region of observation, the density profile, the assumptions for the dark matter model and the uncertainties in the propagation model. We also show the effect of the inclusion of a 20% systematic uncertainty in the gamma-ray background. If Fermi-LAT is able to distinguish a possible dark matter signal from the large gamma-ray background, we show that for dark matter masses below ∼200 GeV, Fermi-LAT will likely be able to determine dark matter properties with good accuracy.  相似文献   

20.
We interpret the results of searches for strongly interacting massive particles to place absolute lower limits on R-parity-violating couplings for squarks with mass (m(q) below 100 GeV. Recent searches for anomalous isotopes require that there be a baryon-number-violating or lepton-number-violating coupling larger than 10(-22)-10(-21) if m(q)>18 GeV. Using data from searches for stable particles at the CERN Large Electron Positron Collider (LEP) we demonstrate that this lower limit increases by 14 orders of magnitude, to an R-parity-violating coupling larger than 10(-8)-10(-7) for any squarks of mass less than 90 GeV. In the presence of an R-parity-violating coupling of this magnitude, neutralinos cannot explain the dark matter density in the Universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号