首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
An algebra is called finitary if it consists of finite-rank transformations of a vector space. We classify finitary simple Lie algebras over an algebraically closed field of zero characteristic. It is shown that any such algebra is isomorphic to one of the following¶ (1) a special transvection algebra \frak t(V,P)\frak t(V,\mit\Pi );¶ (2) a finitary orthogonal algebra \frak fso (V,q)\frak {fso} (V,q); ¶ (3) a finitary symplectic algebra \frak fsp (V,s)\frak {fsp} (V,s).¶Here V is an infinite dimensional K-space; q (respectively, s) is a symmetric (respectively, skew-symmetric) nondegenerate bilinear form on V; and P\Pi is a subspace of the dual V* whose annihilator in V is trivial: 0={v ? V | Pv=0}0=\{{v}\in V\mid \Pi {v}=0\}.  相似文献   

2.
Let (L,[p]) a finite dimensional nilpotent restricted Lie algebra of characteristic p 3 3, c ? L*p \geq 3, \chi \in L^* a linear form. In this paper we study the representation theory of the reduced universal enveloping algebra u(L,c)u(L,\chi ). It is shown that u(L,c)u(L,\chi ) does not admit blocks of tame representation type. As an application, we prove that the nonregular AR-components of u(L,c)u(L,\chi ) are of types \Bbb Z [A ]\Bbb Z [A_\infty ] or \Bbb Z [An]/(t)\Bbb Z [A_n]/(\tau ).  相似文献   

3.
Let h[-(p)h^-(p) be the relative class number of the p-th cyclotomic field. We show that logh-(p) = [(p+3)/4] logp - [(p)/2] log2p+ log(1-b) + O(log22 p)\log h^-(p) = {{p+3} \over {4}} \log p - {{p} \over {2}} \log 2\pi + \log (1-\beta ) + O(\log _2^2 p), where b\beta denotes a Siegel zero, if such a zero exists and p o -1 mod 4p\equiv -1\pmod {4}. Otherwise this term does not appear.  相似文献   

4.
A result of T. A. Gillespie implies that the strong operator closure of any abstractly s\sigma -complete Boolean algebra of projections in a Banach space X which does not contain a copy of c0 is Bade complete. It is shown that the same conclusion is valid for another (extensive) class of Banach spaces X, namely those which are weakly compactly generated. As a consequence, it follows that a Boolean algebra of projections in a separable Banach space is abstractly s\sigma -complete iff it is abstractly complete. It is also shown that a Banach space X has the property that the strong closure of every abstractly complete Boolean algebra of projections in X is Bade complete iff X does not contain a copy of l\ell ^\infty \!.  相似文献   

5.
D'après [6] et [7] l'anneau des entiers du corps quadratique Q(?d), d \not = -3{\bf Q}(\sqrt {d}), d \not = -3, possède une extension cyclique cubique monogène (de discriminant 1) si, et seulement si, l'équation diophantienne¶¶ 4m3 = y2d + 274m^3 = y^2d + 27 a une solution avec d \not o 21d \not \equiv 21 (mod 36) et m \not o 3m \not \equiv 3 (mod 9).¶¶ On démontre ici que pour qu'une telle extension existe il faut que 3 divise h (d) et, lorsque d o 1d \equiv 1 (mod 8), d'où (2) = \frak p1\frak p2(2) = \frak p_1\frak p_2 où \frak p1\frak p_1 et \frak p2\frak p_2 sont deux idéaux premiers distincts de Ad, que la classe [\frak p1][\frak p_1] de \frak p1\frak p_1 dans le groupe de classes de Q(?d){\bf Q}(\sqrt {d}) ne soit pas un cube. Pour |d||d| < 100'000 cela élimine 68,37 % des valeurs restantes, les valeurs éliminées passent ainsi de 90 à 97 %.¶ De plus d ne doit pas être de la forme pq ou -3 pq pour lesquels le symbole d'Aigner T(p *q)T(p \star q) vale -1. L'article comporte aussi deux corrections, des résultats complétant [6] et [7], parus dans une thèse, et d'autres (en particulier l'indépendance des critères et des résultats numériques) parus ailleurs.  相似文献   

6.
Summary. We determine the general solution g:S? F g:S\to F of the d'Alembert equation¶¶g(x+y)+g(x+sy)=2g(x)g(y)       (x,y ? S) g(x+y)+g(x+\sigma y)=2g(x)g(y)\qquad (x,y\in S) ,¶the general solution g:S? G g:S\to G of the Jensen equation¶¶g(x+y)+g(x+sy)=2g(x)       (x,y ? S) g(x+y)+g(x+\sigma y)=2g(x)\qquad (x,y\in S) ,¶and the general solution g:S? H g:S\to H of the quadratic equation¶¶g(x+y)+g(x+sy)=2g(x)+2g(y)       (x,y ? S) g(x+y)+g(x+\sigma y)=2g(x)+2g(y)\qquad (x,y\in S) ,¶ where S is a commutative semigroup, F is a quadratically closed commutative field of characteristic different from 2, G is a 2-cancellative abelian group, H is an abelian group uniquely divisible by 2, and s \sigma is an endomorphism of S with s(s(x)) = x \sigma(\sigma(x)) = x .  相似文献   

7.
We consider anisotropic Schrödinger operators H = -D + V H = -{\Delta} + V in L2(\mathbbRn) L^{2}(\mathbb{R}^n) . To certain asymptotic regions F we assign asymptotic Hamiltonians HF such that (a) s(HF) ì sess(H) \sigma(H_F) \subset \sigma_{\textrm{ess}}(H) , (b) states with energies not belonging to s(HF) \sigma(H_F) do not propagate into a neighbourhood of F under the evolution group defined by H. The proof relies on C*-algebra techniques. We can treat in particular potentials that tend asymptotically to different periodic functions in different cones, potentials with oscillation that decays at infinity, as well as some examples considered before by Davies and Simon in [4].  相似文献   

8.
On the assumption of the truth of the Riemann hypothesis for the Riemann zeta function we construct a class of modified von-Mangoldt functions with slightly better mean value properties than the well known function L\Lambda . For every e ? (0,1/2)\varepsilon \in (0,1/2) there is a [(L)\tilde] : \Bbb N ? \Bbb C\tilde {\Lambda} : \Bbb N \to \Bbb C such that¶ i) [(L)\tilde] (n) = L (n) (1 + O(n-1/4  logn))\tilde {\Lambda} (n) = \Lambda (n) (1 + O(n^{-1/4\,} \log n)) and¶ii) ?n \leqq x [(L)\tilde] (n) (1- [(n)/(x)]) = [(x)/2] + O(x1/4+e) (x \geqq 2).\sum \limits_{n \leqq x} \tilde {\Lambda} (n) \left(1- {{n}\over{x}}\right) = {{x}\over{2}} + O(x^{1/4+\varepsilon }) (x \geqq 2).¶Unfortunately, this does not lead to an improved error term estimation for the unweighted sum ?n \leqq x [(L)\tilde] (n)\sum \limits_{n \leqq x} \tilde {\Lambda} (n), which would be of importance for the distance between consecutive primes.  相似文献   

9.
Summary. We investigate cellular automata (CA) with a local rule f: G2 ? G \phi : G^2 \rightarrow G , where the local rule defines a quasigroup structure (Latin square) on the finite set G. If the quasigroup is semisymmetric or totally symmetric, some top-down equilateral triangular subsets of the CA-orbits, the so-called \triangledown \triangledown -configurations, exhibit certain symmetries. The most interesting symmetries are the rotational and the total (dihedral) symmetries, which may be considered in conjunction with certain automorphisms.¶We first explore the conditions for quasigroups to be symmetric (or for local CA-rules to allow symmetric \triangledown \triangledown -configurations), and how to construct symmetric quasigroups by prolongation, i.e., by steadily increasing the order of the quasigroup, thereby conserving the symmetry. Then we study rotationally or totally symmetric \triangledown \triangledown -configurations. We begin with the existence of symmetric \triangledown \triangledown -configurations of arbitrary size N and N o 0,1 mod 3 N \equiv 0,1\,{\rm mod}\,3 , and show that symmetric \triangledown \triangledown -configurations of size N o 2 mod 3 N \equiv 2\,{\rm mod}\,3 exist under mild conditions on J. We present explicit formulas for the number of distinct symmetric \triangledown \triangledown -configurations. By studying the combined group action of the dihedral (or rotational) group and the automorphism group of the quasigroup G on the \triangledown \triangledown -configurations of size N, we are able to classify and count the number of different equivalence classes of \triangledown \triangledown -configurations.  相似文献   

10.
Let k be a principal ideal domain with identity and characteristic zero. For a positive integer n, with n \geqq 2n \geqq 2, let H(n) be the group of all n x n matrices having determinant ±1\pm 1. Further, we write SL(n) for the special linear group. Let L be a free Lie algebra (over k) of finite rank n. We prove that the algebra of invariants LB(n) of B(n), with B(n) ? { H(n), SL(n)}B(n) \in \{ H(n), {\rm SL}(n)\} , is not a finitely generated free Lie algebra. Let us assume that k is a field of characteristic zero and let áSem(n) ?\langle {\rm Sem}(n) \rangle be the Lie subalgebra of L generated by the semi-invariants (or Lie invariants) Sem(n). We prove that áSem(n) ?\langle {\rm Sem}(n) \rangle is not a finitely generated free Lie algebra which gives a positive answer to a question posed by M. Burrow [4].  相似文献   

11.
It is an open problem whether an infinite-dimensional amenable Banach algebra exists whose underlying Banach space is reflexive. We give sufficient conditions for a reflexive, amenable Banach algebra to be finite-dimensional (and thus a finite direct sum of full matrix algebras). If \frak A {\frak A} is a reflexive, amenable Banach algebra such that for each maximal left ideal L of \frak A {\frak A} (i) the quotient \frak A/L {\frak A}/L has the approximation property and (ii) the canonical map from \frak A \check? L^ {\frak A} \check{\otimes} L^\perp to (\frak A / L) \check? L^ ({\frak A} / L) \check{\otimes} L^\perp is open, then \frak A {\frak A} is finite-dimensional. As an application, we show that, if \frak A {\frak A} is an amenable Banach algebra whose underlying Banach space is an \scr Lp {\scr L}^p -space with p ? (1,¥) p\in (1,\infty) such that for each maximal left ideal L the quotient \frak A/L {\frak A}/L has the approximation property, then \frak A {\frak A} is finite-dimensional.  相似文献   

12.
Let t: D ?D¢\tau: {\cal D} \rightarrow{\cal D}^\prime be an equivariant holomorphic map of symmetric domains associated to a homomorphism r: \Bbb G ?\Bbb G¢{\bf\rho}: {\Bbb G} \rightarrow{\Bbb G}^\prime of semisimple algebraic groups defined over \Bbb Q{\Bbb Q} . If G ì \Bbb G (\Bbb Q)\Gamma\subset {\Bbb G} ({\Bbb Q}) and G¢ ì \Bbb G¢(\Bbb Q)\Gamma^\prime \subset {\Bbb G}^\prime ({\Bbb Q}) are torsion-free arithmetic subgroups with r (G) ì G¢{\bf\rho} (\Gamma) \subset \Gamma^\prime , the map G\D ?G¢\D¢\Gamma\backslash {\cal D} \rightarrow\Gamma^\prime \backslash {\cal D}^\prime of arithmetic varieties and the rationality of D{\cal D} and D¢{\cal D}^\prime as well as the commensurability groups of s ? Aut (\Bbb C)\sigma \in {\rm Aut} ({\Bbb C}) determines a conjugate equivariant holomorphic map ts: Ds ?D¢s\tau^\sigma: {\cal D}^\sigma \rightarrow{\cal D}^{\prime\sigma} of fs: (G\D)s ?(G¢\D¢)s\phi^\sigma: (\Gamma\backslash {\cal D})^\sigma \rightarrow(\Gamma^\prime \backslash {\cal D}^\prime)^\sigma of . We prove that is rational if is rational.  相似文献   

13.
We prove that for any $ \varepsilon > 0 $ \varepsilon > 0 there is k (e) k (\varepsilon) such that for any prime p and any integer c there exist k \leqq k(e) k \leqq k(\varepsilon) pairwise distinct integers xi with 1 \leqq xi \leqq pe, i = 1, ?, k 1 \leqq x_{i} \leqq p^{\varepsilon}, i = 1, \ldots, k , and such that¶¶?i=1k [1/(xi)] o c    (mod p). \sum\limits_{i=1}^k {{1}\over{x_i}} \equiv c\quad (\mathrm{mod}\, p). ¶¶ This gives a positive answer to a question of Erdös and Graham.  相似文献   

14.
The complex group algebra \Bbb CG{\Bbb C}G of a countable group G can be imbedded in the von Neumann algebra NG of G. If G is torsion-free, and if P is a finitely generated projective module over \Bbb CG{\Bbb C}G it is proved that the central-valued trace of NG?\Bbb CGPNG\otimes _{{\Bbb C}G}P, i.e. of an idempotent \Bbb CG{\Bbb C}G-matrix A defining P is equal to the canonical trace k(P)\kappa (P) times identity I. It follows that k(P)\kappa (P) characterizes the isomorphism type of NG?\Bbb CGPNG\otimes _{{\Bbb C}G}P.¶If k(P)\kappa (P) is an integer, e.g., if the weak Bass conjecture holds for G then NG?\Bbb C GPNG\otimes _{{\Bbb C} G}P is free. It is also shown that for certain classes of groups geometric arguments can be used to prove the Bass conjecture.  相似文献   

15.
Let n be an integer greater than 1, and let G be a group. A subset {x1, x2, ..., xn} of n elements of G is said to be rewritable if there are distinct permutations p \pi and s \sigma of {1, 2, ..., n} such that¶¶xp(1)xp(2) ?xp(n) = xs(1)xs(2) ?xs(n). x_{\pi(1)}x_{\pi(2)} \ldots x_{\pi(n)} = x_{\sigma(1)}x_{\sigma(2)} \ldots x_{\sigma(n)}. ¶¶A group is said to have the rewriting property Qn if every subset of n elements of the group is rewritable. In this paper we prove that a finite group of odd order has the property Q3 if and only if its derived subgroup has order not exceeding 5.  相似文献   

16.
The algebra Bp(\Bbb R){\cal B}_p({\Bbb R}), p ? (1,¥)\{2}p\in (1,\infty )\setminus \{2\}, consisting of all measurable sets in \Bbb R{\Bbb R} whose characteristic function is a Fourier p-multiplier, forms an algebra of sets containing many interesting and non-trivial elements (e.g. all intervals and their finite unions, certain periodic sets, arbitrary countable unions of dyadic intervals, etc.). However, Bp(\Bbb R){\cal B}_p({\Bbb R}) fails to be a s\sigma -algebra. It has been shown by V. Lebedev and A. Olevskii [4] that if E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}), then E must coincide a.e. with an open set, a remarkable topological constraint on E. In this note we show if $2 < p < \infty $2 < p < \infty , then there exists E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}) which is not in Bq(\Bbb R){\cal B}_q({\Bbb R}) for any q > pq>p.  相似文献   

17.
For a continuous function s\sigma defined on [0,1]×\mathbbT[0,1]\times\mathbb{T}, let \ops\op\sigma stand for the (n+1)×(n+1)(n+1)\times(n+1) matrix whose (j,k)(j,k)-entries are equal to \frac1 2pò02p s( \fracjn,eiq) e-i(j-k)q  dq,        j,k = 0,1,...,n . \displaystyle \frac{1} {2\pi}\int_0^{2\pi} \sigma \left( \frac{j}{n},e^{i\theta}\right) e^{-i(j-k)\theta} \,d\theta, \qquad j,k =0,1,\dots,n~. These matrices can be thought of as variable-coefficient Toeplitz matrices or as the discrete analogue of pseudodifferential operators. Under the assumption that the function s\sigma possesses a logarithm which is sufficiently smooth on [0,1]×\mathbbT[0,1]\times\mathbb{T}, we prove that the asymptotics of the determinants of \ops\op\sigma are given by det[\ops] ~ G[s](n+1)E[s]     \text as   n?¥ , \det \left[\op\sigma\right] \sim G[\sigma]^{(n+1)}E[\sigma] \quad \text{ as \ } n\to\infty~, where G[s]G[\sigma] and E[s]E[\sigma] are explicitly determined constants. This formula is a generalization of the Szegö Limit Theorem. In comparison with the classical theory of Toeplitz determinants some new features appear.  相似文献   

18.
Asymmetry of a compact convex body L ì Rn{\mathcal L \subset {\bf R}^n} viewed from an interior point O{\mathcal O} can be measured by considering how far L{\mathcal L} is from its inscribed simplices that contain O{\mathcal O}. This leads to a measure of symmetry s(L, O){\sigma(\mathcal L, \mathcal O)}. The interior of L{\mathcal L} naturally splits into regular and singular sets, where the singular set consists of points O{\mathcal O} with largest possible s(L, O){\sigma(\mathcal L, \mathcal O)}. In general, to calculate the singular set of a compact convex body is difficult. In this paper we determine a large subset of the singular set in centrally symmetric compact convex bodies truncated by hyperplane cuts. As a function of the interior point O{\mathcal O}, s(L, .){\sigma(\mathcal L, .)} is concave on the regular set. It is natural to ask to what extent does concavity of s(L, .){\sigma(\mathcal L, .)} extend to the whole (interior) of L{\mathcal L}. It has been shown earlier that in dimension two, s(L, .){\sigma(\mathcal L, .)} is concave on L{\mathcal L}. In this paper, we show that in dimensions greater than two, for a centrally symmetric compact convex body L{\mathcal L}, s(L, .){\sigma(\mathcal L, .)} is a non-concave function provided that L{\mathcal L} has a codimension one simplicial intersection. This is the case, for example, for the n-dimensional cube, n ≥ 3. This non-concavity result relies on the fact that a centrally symmetric compact convex body has no regular points.  相似文献   

19.
Let V be a finite dimensional p-adic vector space and let τ be an operator in GL(V). A probability measure μ on V is called τ-decomposable or m ? [(L)\tilde]0(t)\mu\in {\tilde L}_0(\tau) if μ = τ(μ)* ρ for some probability measure ρ on V. Moreover, when τ is contracting, if ρ is infinitely divisible, so is μ, and if ρ is embeddable, so is μ. These two subclasses of [(L)\tilde]0(t){\tilde L}_0(\tau) are denoted by L 0(τ) and L 0 #(τ) respectively. When μ is infinitely divisible τ-decomposable for a contracting τ and has no idempotent factors, then it is τ-semi-selfdecomposable or operator semi-selfdecomposable. In this paper, sequences of decreasing subclasses of the above mentioned three classes, [(L)\tilde]m(t) é Lm(t) é L#m(t), 1 £ m £ ¥{\tilde L}_m(\tau)\supset L_m(\tau) \supset L^\#_m(\tau), 1\le m\le \infty , are introduced and several properties and characterizations are studied. The results obtained here are p-adic vector space versions of those given for probability measures on Euclidean spaces.  相似文献   

20.
We study the long-term behaviour of the parabolic evolution equation $\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \]$\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \] If A(t) A(t) converges to a sectorial operator A with s(A)?i \Bbb R = ? \sigma(A)\cap i \Bbb R =\emptyset as t?¥ t\to\infty , then the evolution family solving the homogeneous problem has exponential dichotomy. If also f(t)? f f(t)\to f_\infty , then the solution u converges to the 'stationary solution at infinity', i.e., limt?¥u(t) = -A\sp-1f=:u,        limt?¥u¢(t)=0,        limt?¥A(t)u(t)=Au. \lim_{t\to\infty}u(t)= -A\sp{-1}f_\infty=:u_\infty, \qquad \lim_{t\to\infty}u'(t)=0, \qquad \lim_{t\to\infty}A(t)u(t)=Au_\infty. .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号