首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weak localization in a system of gapless two-dimensional Dirac fermions in HgTe quantum wells with thickness d = 6.6 nm, which corresponds to the transition from a normal to an inverted spectrum, has been investigated experimentally. A negative logarithmic correction to the conductivity of the system has been observed both at the Dirac point and in the vicinity of this point. The anomalous magnetoresistance of two-dimensional Dirac fermions is positive. This indicates that weak localization in the system of two-dimensional Dirac fermions occurs owing to localization and interaction effects in the presence of rapid spin relaxation.  相似文献   

2.
The density-dependent mobility of n-type HgTe quantum wells with inverted band ordering has been studied both experimentally and theoretically. While semiconductor heterostructures with a parabolic dispersion exhibit an increase in mobility with carrier density, high-quality HgTe quantum wells exhibit a distinct mobility maximum. We show that this mobility anomaly is due to backscattering of Dirac fermions from random fluctuations of the band gap (Dirac mass). Our findings open new avenues for the study of Dirac fermion transport with finite and random mass, which so far has been hard to access.  相似文献   

3.
The mobility of Dirac electrons (DEs) in HgTe quantum wells with the thickness close to the critical value corresponding to the transition from the direct to inverted spectrum has been studied experimentally and theoretically. The nonmonotonic dependence of this mobility on the electron density is found experimentally. The theory of DE scattering on impurities and fluctuations of the thickness of a well caused by its roughnesses is elaborated. This theory is in good agreement with experiment and explains the observed nonmonotonicity by the decrease in the ratio of the de Broglie wavelength of DEs to the characteristic size of the roughness with the increase in their concentration.  相似文献   

4.
Cyclotron resonance of single-valley two-dimensional Dirac fermions in HgTe-based quantum wells has been experimentally investigated. The thickness of the wells is close to the critical value corresponding to the transition from the direct energy spectrum to the inverted spectrum. Under terahertz laser irradiation, transitions between the ground and first Landau levels, as well as between the first and second Landau levels, have been observed. Low magnetic fields corresponding to the cyclotron resonance, as well as the strong dependence of the position of the resonance on the electron density, indicate the Dirac character of the spectrum in these quantum wells. It has been shown that disorder plays an important role in the formation of the spectrum of two-dimensional Dirac fermions.  相似文献   

5.
The 2D semimetal in a 20 nm (100) HgTe quantum well is characterized by a comparatively low overlap between the conduction and the valence bands induced by lattice mismatch. In the present paper we report the results of transport measurements in this quantum well under hydrostatic pressure of 14.4 kbar. By applying pressure we have further reduced the band overlap, thereby creating favorable conditions for the formation of the excitonic insulator state. As a result, we observed that the metallic-like temperature dependence of the conductivity at lowering temperature sharply changes to the activated behavior, signaling the onset of an excitonic insulator regime.  相似文献   

6.
7.
Microwave cyclotron resonance of electrons and holes at the metal-to-semimetal transition in HgTe quantum wells with an inversed band structure has been investigated. The resonance has been studied by measuring microwave photoresistance in the frequency range of 35–170 GHz. The effective cyclotron masses of electrons and holes have been determined. A shift of the cyclotron resonance of the two-dimensional electrons at the metal-to-semimetal transition possibly caused by plasma effects in the two-dimensional semimetal has been discovered.  相似文献   

8.
The terahertz response of a two-dimensional topological insulator in a HgTe quantum well to radiation with wavelengths of 118 and 184 μm is investigated. It is found that the photoconductivity is rather high (up to a few percent of dark conductivity) and is manifested in both the local and nonlocal responses of the system. This fact proves that the observed photoconductivity is caused by changes in the transport via edge current-carrying states. The sign and nonresonant character of the photoconductivity indicate that it is caused by the heating of electrons in the system. The analysis of experimental results makes it possible to suggest that this heating originates from the Drude absorption of terahertz radiation by metallic “droplets” appearing owing to fluctuations in the impurity potential and the gap and located in direct proximity to edge states.  相似文献   

9.
10.
The dependence of the electric resistance R of nanoperforated graphene samples on the position of the Fermi level E F, which is varied by the gate voltage V g, has been studied. Nanoperforation has been performed by irradiating graphene samples on a Si/SiO2 substrate by heavy (xenon) or light (helium) ions. A series of regular peaks have been revealed on the R(V g) dependence at low temperatures in zero magnetic field. These peaks are attributed to the passage of E F through an equidistant set of levels formed by orbitally quantized states of edge Dirac fermions rotating around each nanohole. The results are in agreement with the theory of edge states for massless Dirac fermions.  相似文献   

11.
The electron transport and cyclotron resonance in a one-sided selectively doped HgTe/CdHgTe (013) heterostructure with a 15-nm quantum well with an inverted band structure have been investigated. The modulation of the Shubnikov-de Haas oscillations has been observed, and the spin splitting in zero magnetic field has been found to be about 30 meV. A large Δm c/m c ≃ 0.12 splitting of the cyclotron resonance line has been discovered and shown to be due to both the spin splitting and the strong nonparabolicity of the dispersion relation in the conduction band.  相似文献   

12.
We have investigated the absorption spectrum of multilayer graphene in high magnetic fields. The low-energy part of the spectrum of electrons in graphene is well described by the relativistic Dirac equation with a linear dispersion relation. However, at higher energies (>500 meV) a deviation from the ideal behavior of Dirac particles is observed. At an energy of 1.25 eV, the deviation from linearity is approximately 40 meV. This result is in good agreement with the theoretical model, which includes trigonal warping of the Fermi surface and higher-order band corrections. Polarization-resolved measurements show no observable electron-hole asymmetry.  相似文献   

13.
The problem of dx2-y2-wave quasiparticles in a weakly disordered Abrikosov vortex lattice is studied. Starting with a periodic lattice, the topological structure of the magnetic crystal momenta of gapless fermions is found for the particle-hole symmetric case. If in addition the site centered inversion symmetry is present, both the location and the number of the gapless fermions can be determined using an index theorem. In the case of spatially aperiodic vortex array, Simon and Lee scaling is found to be violated due to a quantum anomaly. The electronic density of states is found to scale with the root-mean-square vortex displacement as sqrt[H]f(u2rms/xi2), while thermal conductivity is H independent, but different from the H=0 case.  相似文献   

14.
A self-consisting gauge-theory approach to describe Dirac fermions on flexible surfaces with a disclination is formulated. The elastic surfaces are considered as embeddings into R 3 and a disclination is incorporated through a topologically nontrivial gauge field of the local SO(3) group which generates the metric with conical singularity. A smoothing of the conical singularity on flexible surfaces is naturally accounted for by regarding the upper half of two-sheet hyperboloid as an elasticity-induced embedding. The availability of the zeromode solution to the Dirac equation is analyzed.  相似文献   

15.
We investigate the physical properties of massive Dirac fermions in SrMnSb2 using transport, specific heat, electronic structure calculations, and Shubnikov-de Haas (SdH) oscillations. SrMnSb2 is a candidate Dirac antiferromagnet, consisting of the MnSb layers and the distorted square net of Sb atoms with a zigzag chain structure. This structural distortion leads to gap opening at the band crossing point found in the square lattice of the sister compound SrMnBi2 but leaves another Dirac band crossing near the Brillouin zone boundary. The small 2D Fermi surface with a light electron mass and a small Fermi energy is confirmed by the large resistivity anisotropy, the large Seebeck coefficient, and also the angle and temperature dependent SdH oscillations. The Berry phase obtained from the SdH oscillations is trivial, in contrast to the case of SrMnBi2. The relatively large spin orbit coupling gap and the small Fermi energy in SrMnSb2 is found to be essential to understand this contrasting behavior of the massive Dirac fermions as compared to SrMnBi2. Our observations demonstrate that the Berry phase of the mobile electrons in SrMnSb2 is sensitive to the Fermi level change and can be tuned by doping or deficiency.  相似文献   

16.
We investigate the ultrafast relaxation dynamics of hot Dirac fermionic quasiparticles in multilayer epitaxial graphene using ultrafast optical differential transmission spectroscopy. We observe differential transmission spectra which are well described by interband transitions with no electron-hole interaction. Following the initial thermalization and emission of high-energy phonons, the electron cooling is determined by electron-acoustic phonon scattering, found to occur on the time scale of 1 ps for highly doped layers, and 4-11 ps in undoped layers. The spectra also provide strong evidence for the multilayer structure and doping profile of thermally grown epitaxial graphene on SiC.  相似文献   

17.
We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.  相似文献   

18.
In the presence of the charged impurities, we study the weak localization effect by evaluating the quantum interference correction to the conductivity of Dirac fermions in graphene. With the inelastic scattering rate due to electron-electron interactions obtained from our previous work, we investigate the dependence of the quantum interference correction on the carrier concentration, the temperature, the magnetic field, and the size of the sample. It is found that weak localization is present in large size samples at finite carrier doping. Its strength becomes weakened or quenched when the sample size is less than a few microns at low temperatures as studied in the experiments. In the region close to zero doping, the system may become delocalized. The minimum conductivity at low temperature for experimental sample sizes is found to be close to the data.  相似文献   

19.
Spectral analysis of the Shubnikov-de Haas magnetoresistance oscillations and the quantum Hall effect (QHE) measured in quasi-2D highly oriented pyrolytic graphite (HOPG) [Phys. Rev. Lett. 90, 156402 (2003)] reveals two types of carriers: normal (massive) electrons with Berry phase 0 and Dirac-like (massless) holes with Berry phase pi. We demonstrate that recently reported integer- and semi-integer QHEs for bilayer and single-layer graphenes take place simultaneously in HOPG samples.  相似文献   

20.
Motivated by recent graphene transport experiments, we undertake a numerical study of the conductivity of disordered two-dimensional massless Dirac fermions. Our results reveal distinct differences between the cases of short-range and Coulomb randomly distributed scatterers. We speculate that this behavior is related to the Boltzmann transport theory prediction of dirty-limit behavior for Coulomb scatterers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号