首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of the flow boiling patterns and heat transfer coefficients of FC-72 in a small tube. The internal diameter of the tube is 0.48 mm, with a heated length of 73 mm. The mass flow rate varies from 50 to 3,000 kg/m2-s. The microtube is made of Pyrex in order to obtain the visualisation of the flow pattern along the heated channel. Different types of flow pattern have been observed: bubbly flow, deformed bubbly flow, bubbly/slug flow, slug flow, slug/annular flow, and annular flow. The experiments show the presence of flow instabilities in a large portion of the tests at low mass flow rates and low subcooling. Flow patterns in presence of flow instabilities are mainly characterized by bubbly/slug flow and slug/annular flow. Heat transfer rates have been studied in all flow pattern conditions. The two groups of results, with flow instabilities and without flow instabilities, show similar heat transfer behaviour. The heat transfer characteristics of the pipes have been studied in comparison with mass flux and vapour quality.  相似文献   

2.
This work proposes a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels to update the widely used three-zone model of Thome et al. (2004). The heat transfer model has a convective boiling nature and predicts the time-dependent variation of the local heat transfer coefficient during the cyclic passage of a liquid slug, an evaporating elongated bubble and a vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method also considering bubble proximity effects, which may limit the radial extension of the film, is included. The minimum liquid film thickness at dryout is set to the channel wall roughness. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies. The 833 slug flow boiling data points cover the fluids R134a, R245fa and R236fa, and channel diameters below 1 mm. The proposed evaporation model predicts more than 80% of the database to within ±30%. It demonstrates a stronger contribution to heat transfer by the liquid slugs and correspondingly less by the thin film evaporation process compared to the original three-zone model. This model represents a new step towards a complete physics-based modelling of the bubble dynamics and heat transfer within microchannels under evaporating flow conditions.  相似文献   

3.
This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04 mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04 mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co ≈ 0.99) and 1.03 (Co ≈ 0.78) mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].  相似文献   

4.
An experimental investigation is carried out to study heat transfer characteristics of a rotating triangular thermosyphon, using R-134a refrigerant as the working fluid. The tested thermosyphon is an equilateral triangular tube made from copper material of 11?mm triangular length, 2?mm thickness, and a total length of 1,500?mm. The length of the evaporator section is 600?mm, adiabatic section is 300?mm, and condenser section is 600?mm. The effects of the rotational speed, filling ratio, and the evaporator heat flux on each of the evaporator heat transfer coefficient, he, condenser heat transfer coefficient, hc, and the overall effective thermal conductance, Ct are studied. Experiments are performed with a vertical position of thermosyphon within heat flux ranges from 11 to 23?W/m2 for the three selected filling ratios of 10, 30 and 50?% of the evaporator section volume. The results indicated that the maximum values of the tested heat transfer parameters of the rotational equilateral triangular thermosyphon are obtained at the filling ratio of 30?%. Also, it is found that the heat transfer coefficient of the condensation is increased with increasing the rotational speed. The tested heat transfer parameters of the thermosyphon are correlated as a function of the evaporator heat flux and angular velocity.  相似文献   

5.
The challenges that microchannel flow boiling technology faces are the lack of understanding of underlying mechanisms of heat transfer during various flow boiling regimes and a dearth of analytical models that can predict heat transfer. This paper aims to understand flow boiling heat transfer mechanisms by analyzing results obtained by synchronously captured high-speed flow visualizations with local, transient temperature data. Using Inverse Heat Conduction Problem (IHCP) solution methodology, the transient wetted surface heat flux and temperature as well as heat transfer coefficient are calculated. These are then correlated with the visual data. Experiments are performed on a single microchannel embedded with fast response temperature sensors located (630 µm) below the wetted surface. The height, width and length of the microchannel are 0.42 mm, 2.54 mm and 25.4 mm respectively. De-ionized, de-gassed water is used as the working fluid. Two heat fluxes are tested at each of the mass fluxes of 182 kg/(m2s) and 380 kg/(m2s). Because of vapor confinement, slug flow is observed for the tested conditions. The present study provides detailed insights into the effect of various events such as passage of vapor slug, 3-phase contact line, partial-dry-out and liquid slug on transient heat transfer coefficient. Transient heat transfer coefficient peaks when thin film evaporation mechanism is prevalent. The peak value is influenced by the distance of bubble incipience as well as downstream events obstructing the flow. Heat transfer coefficient during the passage of liquid slug and 3-phase contact line were relatively lower for the tested experimental conditions.  相似文献   

6.
以甲醇为工质,采用高速数据采集系统测定了微型热驱动回路在不同运行参数下的压力 及温度脉动,其脉动周期及脉动幅度随蒸发段热流密度的增加而减小. 实验发现,在蒸发段 热流密度较低的情况下,蒸气管中是泡状流或弹状流交替存在,而在蒸发段热流密度较高时, 蒸气管中为环状流. 就位差对热性能的影响进行了详细的实验研究,并在冷凝器空气自 然对流和强迫对流情况下,以加热块温度90${^\circ}$C为上限,得出微通道蒸发器和冷凝 器在不同位差下的最大蒸发段热流密度. 通过对实验现象的观察及分析,以期开发出适用于 未来电子产品高功率需求的微型化电子冷却器.  相似文献   

7.
A fast response, linearized X-ray void measurement system has been used to obtain statistical measurements in normally fluctuating air-water flow in a rectangular channel. It is demonstrated that the probability density function (PDF) of the fluctuations in void fraction may be used as an objective and quantitative flow pattern discriminator for the three dominant patterns of bubbly, slug, and annular flow. This concept is applied to data over the range of 0.0 to 37 m/sec mixture velocities to show that slug flow is simply a transitional, periodic time combination of bubbly and annular flows. Film thicknesses calculated from the PDF data are similar in magnitude in both slug and annular flows. Calculation of slug length and residence time ratios along with bubble lengths in slug flow are also readily obtainable from the statistical measurements. Spectral density measurements showed bubbly flow to be stochastic while slug and annular flows showed periodicities correlatable in terms of the liquid volume flux.  相似文献   

8.
An optical measurement method using image processing for two-phase flow pattern characterization in minichannel is developed. The bubble frequency, the percentage of small bubbles as well as their velocity are measured. A high-speed high-definition video camera is used to measure these parameters and to identify the flow regimes and their transitions. The tests are performed in a 3.0 mm glass channel using saturated R-245fa at 60 °C (4.6 bar). The mass velocity is ranging from 100 to 1500 kg/m2 s, the heat flux is varying from 10 to 90 kW/m2 and the inlet vapor quality from 0 to 1. Four flow patterns (bubbly flow, bubbly–slug flow, slug flow and annular flow) are recognized. The comparison between the present experimental intermittent/annular transition lines and five transition lines from macroscale and microscale flow pattern maps available in the literature is presented. Finally, the influence of the flow pattern on the heat transfer coefficient is highlighted.  相似文献   

9.
This paper presents experimental investigations on nitrogen/non-Newtonian fluid two-phase flow in vertical noncircular microchannels, which have square or triangular cross-section with the hydraulic diameters being Dh = 2.5, 2.886 and 0.866 mm, respectively, by visualization method. Three non-Newtonian aqueous solutions with typical rheological properties, i.e., 0.4% carboxymethyl cellulose (CMC), 0.2% polyacrylamide (PAM) and 0.2% xanthan gum (XG) are chosen as the working fluids. The common flow patterns are identified as slug flow, churn flow and annular flow. The dispersed bubble flow is only found in the case with nitrogen/CMC solution two-phase flow in the largest channel. A new flow pattern of nitrogen/PAM solution two-phase flow, named chained bubble/slug flow, is observed in all the test channels. The flow regime maps are also developed and the results show that the rheological properties of the non-Newtonian fluid have remarkable influence on the flow pattern transitions. The geometrical factors of the microchannel such as the cross-section shape and hydraulic diameter of the channel can also affect the flow regime map. Finally, the results obtained in this work are compared with the available flow pattern transitions.  相似文献   

10.
Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80–125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.  相似文献   

11.
In micro channels, slug flow becomes one of the main flow regimes due to strong surface tension. In micro channel slug flow, elongated bubble flows with the thin liquid film confined between the bubble and the channel wall. Liquid film thickness is an important parameter in many applications, e.g., micro heat exchanger, micro reactor, coating process etc. In the present study, liquid film thickness in micro square channels is measured locally and instantaneously with the confocal method. Square channels with hydraulic diameter of Dh = 0.3, 0.5 and 1.0 mm are used. In order to investigate the effect of inertial force on the liquid film thickness, three working fluids, ethanol, water and FC-40 are used. At small capillary numbers, liquid film at the channel center becomes very thin and the bubble interface is not axisymmetric. However, as capillary number increases, bubble interface becomes axisymmetric. Transition from non-axisymmetric to axisymmetric flow pattern starts from lower capillary number as Reynolds number increases. An empirical correlation for predicting axisymmetric bubble radius based on capillary number and Weber number is proposed from the present experimental data.  相似文献   

12.
We present an analysis of the geometry of the continuous and disperse phases in the bubble and slug flow regimes in air–water mixtures generated in a capillary T-junction of 1  mm internal diameter. Bubble size dispersion is very low in the considered flow patterns. The concept of unit cell is used to identify two characteristic lengths of the two-phase flow, namely, the unit cell length and the bubble length. The relationship between these lengths and the gas and liquid superficial velocities, gas mean velocity, bubble generation frequency and volume average void fraction is analysed. We conclude that in the considered configuration the unit cell and bubble lengths can be predicted either by the ratio of the gas–liquid superficial velocities or the volume average void fraction.  相似文献   

13.
The rapid development of two-phase microfluidic devices has triggered the demand for a detailed understanding of the flow characteristics inside microchannel heat sinks to advance the cooling process of micro-electronics. The present study focuses on the experimental investigation of pressure drop characteristics and flow visualization of a two-phase flow in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 276 μm, width of 225 μm, and a length of 16 mm. Experiments are carried out for mass fluxes ranging from 341 to 531 kg/m2 s and heat fluxes from 60.4 to 130.6 kW/m2 using FC-72 as the working fluid. Bubble growth and flow regimes are observed using high speed visualization. Three major flow regimes are identified: bubbly, slug, and annular. The frictional two-phase pressure drop increases with exit quality for a constant mass flux. An assessment of various pressure drop correlations reported in the literature is conducted for validation. A new general correlation is developed to predict the two-phase pressure drop in microchannel heat sinks for five different refrigerants. The experimental pressure drops for laminar-liquid laminar-vapor and laminar-liquid turbulent-vapor flow conditions are predicted by the new correlation with mean absolute errors of 10.4% and 14.5%, respectively.  相似文献   

14.
This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m2s, heat fluxes from 2.3 kW/m2 to 250 kW/m2 at Tsat = 31 °C and ΔTsub from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research.  相似文献   

15.
利用格子Boltzmann方法模拟二维水平通道内水的流动沸腾过程,获得不同壁面过热度下流型特点和不同因素对换热过程的影响规律。结果表明,随着壁面过热度升高,流道内流型依次经历从泡状流、弹状流到反环流的转变,平均热流密度和平均换热系数先增大后减小。入口流速降低会使流道内出现受限气泡流,核态沸腾受到抑制。提高入口流速能够有效促进气泡脱离,壁面平均换热系数随入口流速增大而增大,但增长速率有所减小。减小通道宽度有利于汽化现象发生,核态沸腾得到强化,壁面平均换热系数有所提高。  相似文献   

16.
An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and −20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.  相似文献   

17.
A mathematical model based on the annular flow pattern is developed to simulate the evaporation of refrigerants flowing under varied heat flux in a double tube evaporator. The finite difference form of governing equations of this present model is derived from the conservation of mass, energy and momentum. The experimental set-up is designed and constructed to provide the experimental data for verifying the simulation results. The test section is a 2.5 m long counterflow double tube heat exchanger with a refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tube is made from smooth horizontal copper tubing of 9.53 mm outer diameter and 7.1 mm inner diameter. The agreement of the model with the experimental data is satisfactory. The present model can be used to investigate the axial distributions of the temperature, heat transfer coefficient and pressure drop of various refrigerants. Moreover, the evaporation rate or the other relevant parameters that is difficult to measure in the experiment are predicted and presented here. The results from the present mathematical model show that the saturation pressure and temperature of refrigerant decrease along the tube due to the tube wall friction and the flow acceleration of refrigerant. The liquid heat transfer coefficient increases with the axial length due to reducing the thickness of the liquid refrigerant film. Due to increase of the liquid heat transfer coefficient, increasing wall heat flux is obtained.Finally, the evaporation rate of refrigerant increases with increasing wall heat flux.  相似文献   

18.
This article is the second part of a study on flow boiling of R236fa and R245fa. This part presents the heat transfer coefficients obtained in a 12.7 mm silicon evaporator composed of 135 microchannels with 85 μm wide and 560 μm high channels separated by 46 μm wide fins. There were 35 local heaters and temperature measurements arranged in a 5 × 7 array. The heat transfer results were uniform in the lateral direction to the flow (attributable to the inlet restriction) and a function of the heat flux, vapor quality and mass flux. The steady-state standard deviation of the local base temperature was less than 0.2 °C, inferring that the boiling process was very stable. For wall heat fluxes over 45 kW/m2, the heat transfer coefficient curves were V-shaped, decreasing for intermittent flow regimes and increasing for annular flow. The three-zone model of Thome et al. (2004) was the best heat transfer prediction method when setting the dryout thickness equal to the channel roughness.  相似文献   

19.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

20.
Slug flow is one of the representative flow regimes of two-phase flow in micro tubes. It is well known that the thin liquid film formed between the tube wall and the vapor bubble plays an important role in micro tube heat transfer. In the present study, experiments are carried out to clarify the effects of parameters that affect the formation of the thin liquid film in micro tube two-phase flow. Laser focus displacement meter is used to measure the thickness of the thin liquid film. Air, ethanol, water and FC-40 are used as working fluids. Circular tubes with five different diameters, D = 0.3, 0.5, 0.7, 1.0 and 1.3 mm, are used. It is confirmed that the liquid film thickness is determined only by capillary number and the effect of inertia force is negligible at small capillary numbers. However, the effect of inertia force cannot be neglected as capillary number increases. At relatively high capillary numbers, liquid film thickness takes a minimum value against Reynolds number. The effects of bubble length, liquid slug length and gravity on the liquid film thickness are also investigated. Experimental correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号