首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen enhanced localized plasticity (HELP) is a viable mechanism for hydrogen embrittlement supported by experimental observations. According to the HELP mechanism, hydrogen induced premature failures result from hydrogen induced plastic instability which leads to hydrogen assisted localized ductile processes. The objective of this work is to reveal the role of hydrogen in possibly localizing the macroscopic deformation into bands of intense shear using solid mechanics methodology. The hydrogen effect on material deformation is modeled through the hydrogen induced volume dilatation and the reduction in the local flow stress upon hydrogen dissolution into the lattice. Hydrogen in assumed to reside in both normal interstitial lattice sites (NILS) and reversible traps associated with the plastic deformation. The analysis of the plastic deformation and the conditions for plastic flow localization are carried out in plane strain uniaxial tension. For a given initial hydrogen concentration in the unstressed specimen, a critical macroscopic strain is identified at which shear localization commences.  相似文献   

2.
Shear band spacing in Zr-based bulk metallic glasses (BMGs) under dynamic loads is found to vary with position and local strain rate in the indented region. To investigate the dependence of shear band evolution characteristics on local strain rate and normal stress, a micromechanical model based on momentum diffusion is proposed. The thermo-mechanical model takes into account the normal stress dependence of yield stress, the free volume theory and the associated viscosity change within the shear band region. Temperature rise is obtained from the balance between the heat diffusion to the adjacent regions from a shear band and the heat generation due to the accumulated plastic work in a shear band. The parametric study has revealed that thermal effects play a minor role when the critical shear displacement is below 10 nm (as in nanoindentation) but become significant when the shear displacement accumulated in a shear band is of the order of hundreds of nanometers (as in uniaxial compression and in dynamic indentations). Finally, it is found that the normal stress plays a crucial role in the deformation behavior of BMGs by not only decreasing the time for shear band formation but also increasing the temperature rise significantly.  相似文献   

3.
Optimal design of a rigid-plastic stepped beam and circular plate is considered in the first part of the paper assuming the mode form of motion. The form of optimal mode is sought for which a structure of constant volume attains a minimum of local or mean deflection. It is assumed that the constant kinetic energy Ko is attained by the structure through impulsive loading. Differences between optimal static and dynamic solutions are discussed. Non-uniqueness of modes is demonstrated and significance of stable mode motions is emphasized. In the second part of the paper, an optimal design of a rigid-plastic stepped beam loaded by a uniform pressure over a time interval 0 ? t ? t1 is considered assuming constant beam volume and looking for a design corresponding to minimum of local deflection. The solution presented is valid for moderate dynamic pressures when mode motion occurs during consecutive time intervals and no travelling plastic hinges exist.  相似文献   

4.
5.
A combined necking and shear localization analysis is adopted to model the failures of two aluminum sheets, AA5754 and AA6111, under biaxial stretching conditions. The approach is based on the assumption that the reduction of thickness or the necking mode is modeled by a plane stress formulation and the final failure mode of shear localization is modeled by a generalized plane strain formulation. The sheet material is modeled by an elastic-viscoplastic constitutive relation that accounts for the potential surface curvature, material plastic anisotropy, material rate sensitivity, and the softening due to the nucleation, growth, and coalescence of microvoids. Specifically, the necking/shear failure of the aluminum sheets is modeled under uniaxial tension, plane strain tension and equal biaxial tension. The results based on the mechanics model presented in this paper are in agreement with those based on the forming limit diagrams (FLDs) and tensile tests. When the necking mode is suppressed, the failure strains are also determined under plane strain conditions. These failure strains can be used as guidances for estimation of the surface failure strains on the stretching sides of the aluminum sheets under plane strain bending conditions. The estimated surface failure strains are higher than the failure strains of the forming limit diagrams under plane strain stretching conditions. The results are consistent with experimental observations where the surface failure strains of the aluminum sheets increase significantly on the stretching sides of the sheets under bending conditions. The results also indicate that when a considerable amount of necking is observed for a sheet metal under stretching conditions, the surface failure strains on the stretching sides of the sheet metal under bending conditions can be significantly higher.  相似文献   

6.
This paper describes an expeirmental investigation which was carried out to determine the fatigue life of two aluminum alloys (2024-T3 and 6061-T6). They were subjected to both constant-strain-amplitude sinusoidal and narrow-band random-strain-amplitude fatigue loadings. The fatigue-life values obtained from the narrow-band random testing were compared with theoretical predictions based on Miner's linear accumulation of damage hypothesis. Cantilever-beam-test specimens fabricated from the aluminum alloys were subjected to either a constant-strain-amplitude sinusoidal or a narrow-band random base excitation by means of an electromagnetic vibrations exciter. It was found that the ε-N curves for both alloys could be approximated by three straight-line segments in the low-, intermediate- and high-cycle fatigue-life ranges. Miner's hypothesis was used to predict the narrow-band random fatigue lives of materials with this type of ε-N behavior. These fatigue-life predictions were found to consistently overestimate the acutal fatigue lives by a factor of 2 or 3. However, the shape of the predicted fatigue-life curves and the high-cycle fatigue behavior of both materials were found to be in good agreement with the experimental results.  相似文献   

7.
8.
IntroductionQuasicrystalasanewstructureofsolidmatter[1,2 ]bringsprofoundnewideastothetraditionalcondensedmatterphysicsandencouragesconsiderabletheoreticalandexperimentalstudiesonthephysicalandmechanicalpropertiesofthematerial,includingtheelasticitytheoryofthequasicrystal,manyvaluableresultsweregiven[3~ 5 ].Defectsinthematerialwereobservedsoonafterthediscoveryofthequasicrystal[6 ,7].Cracksareonetypeofdefects,theirexistencegreatlyinfluencesthephysicalandmechanicalpropertiesofthequasicrystalinem…  相似文献   

9.
The problem of a center-cracked strip subjected to uniform remote anti-plane shear stress is transformed to a problem in a hodograph plane which is solved exactly by Mellin transform and Wiener-Hopf technique. The material of the strip satisfies a pure power hardening stress strain relation and the results are valid for both deformation and flow theories of placticity. Numerical values are given for the crack opening displacement δ and Rice's path independent J integral for several values of the power hardening exponent n and crack width to strip width ratios. Approximate asymptotic formulas are presented for J and δ for large n.  相似文献   

10.
通过实验和数值模拟对泡沫铝中冲击波传播特性进行了研究,结果表明:冲击波在泡沫铝中传播时显示明显的衰减特性;与此同时波头升时逐渐增加。这种衰减耗散特性主要来源于泡沫铝本身的本构粘性效应,而追赶卸载效应又会进一步促进冲击波的衰减。这为泡沫铝作为新型抗冲击缓冲材料提供设计基础。  相似文献   

11.
High-pressure strength of aluminum under quasi-isentropic loading   总被引:1,自引:0,他引:1  
Under shock loading, metals typically increase in strength with shock pressure initially but at higher stresses will eventually soften due to thermal effects. Under isentropic loading, thermal effects are minimized, so strength should rise to much higher levels. To date, though, study of strength under isentropic loading has been minimal. Here, we report new experimental results for magnetic ramp loading and impact by layered impactors in which the strength of 6061-T6 aluminum is measured under quasi-isentropic loading to stresses as high as 55 GPa. Strength is inferred from measured velocity histories using Lagrangian analysis of the loading and unloading responses; strength is related to the difference of these two responses. A simplified method to infer strength directly from a single velocity history is also presented. Measured strengths are consistent with shock loading and instability growth results to about 30 GPa but are somewhat higher than shock data for higher stresses. The current results also agree reasonably well with the Steinberg–Guinan strength model. Significant relaxation is observed as the peak stress is reached due to rate dependence and perhaps other mechanisms; accounting for this rate dependence is necessary for a valid comparison with other results.  相似文献   

12.
Shear band formation in a thermal viscoplastic heat conducting material is described in a simple shear test at high strain rate with inertia effects. The classical perturbation method is discussed, and a new relative perturbation method accounting for non-steadiness of plastic flow is presented. They respectively provide instability and localization criteria which are compared. Furthermore both are compared to available nonlinear exact results and to experimental data. The influence of material parameters, initial imperfections, and boundary conditions is described.  相似文献   

13.
Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 68–77, September–October, 1994.  相似文献   

14.
15.
A method for numerical simulation of the motion of the plane liner in a magnetic compressor based on a combination of the transverse and longitudinal two-dimensional models is proposed. The method permits modeling the interaction of the liner ribbon with the rigid basement for the liner kinematic characteristics close to the experimental ones. Three different model are considered to justify the choice of the mathematical model of an elastoplastic body which would be suitable for solving similar problems. A series of computations is performed, and the results and scope of each of the models are analyzed.  相似文献   

16.
岩体—界面系统剪切不稳定性分析   总被引:1,自引:0,他引:1  
基于界面的刚塑性应变软化假设,分析了岩体-界面系统在端部剪力和岩体中分布剪切载荷共同作用下的变形、应力和损伤演化。利用位能原理和稳定性的能量准则,得到了岩体界面系统的不稳定性条件。分析结果表明,损伤区达到边界之前,系统可能是稳定的或者是不稳定的。依赖于分布剪切载荷和界面摩擦力的比较,若均布剪切载荷大于界面摩擦力,则系统不稳定,否则系统稳定;当损伤区达到边界之后,系统的不稳定性决定于载荷及界面材料性质,界面软化刚度系数和界面强度对于不稳定性有明显影响。  相似文献   

17.
The problem of a semi-infinite body with an edge crack subjected to far out-of-plane shear is solved by a transformation to a hodograph plane and the Wiener-Hopf technique. The material stress-strain behavior is governed by a pure power hardening relation and the results are valid for both deformation theory and flow theory of plasticity. Results are presented for crack opening displacement, path independent J integral and crack tip singularities for all finite values of the power hardening parameter.  相似文献   

18.
Ze-Ping Wang  C. T. Sun   《Wave Motion》2002,36(4):473-485
A continuum model including micro-inertia for heterogeneous materials under dynamic loading is proposed using a micro-mechanics method. The macro strain and stress are defined as the volume averages of the strain and stress fields in the representative volume element (RVE). The macro equations of motion are derived by using Hamilton’s principle together with the strain energy density and kinetic energy density involving the micro-inertia terms. The new macro equations of motion are used to study harmonic and transient wave propagation in layered media. Using a simple linear displacement field for the RVE, the dispersion curves obtained from the present model agree with the exact solutions very well for a range of wavelengths. The present model is also applied to analyze the transient response of layered media subjected to a triangular pulse loading. Comparison is made between the results of the present model and a finite element analysis.  相似文献   

19.
Recent theoretical work permits a characterization of loads in the cord layer of operating V-belts. Experimental evidence corroborating theory has been limited. Such evidence has been collected and is presented in this paper. Given are empirical relationships describing how peak strains across and along the belt occurring during an operating cycle vary with preload, transmitted torque, pulley diameter and speed. Representative plots are included to illustrate the dependence of strains on position around pulleys in the drive system. Comparisons of theoretical results and data collected during this study reveal potentially significant differences. Reasons for these differences are hypothesized. High strain rates in operating V-belt drives and their influence on maximum stress are discussed, as are subsidiary matters including belt instrumentation and strain-signal transmission.  相似文献   

20.
A theoretical model for predicting the plastic behavior of a polycrystal under shear loading is derived. All the material properties appearing in the macroconstitutive equation are explicitly given in terms of the single crystal properties and crystalline structure. Numerical results for FCC polycrystals are calculated by a Monte Carlo method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号