首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Yaroshevich  A. S.  Kvon  Z. D.  Gusev  G. M.  Mikhailov  N. N. 《JETP Letters》2020,111(2):121-125
JETP Letters - The microwave photoresistance of a two-dimensional topological insulator in a HgTe quantum well with an inverted spectrum has been experimentally studied under irradiation at...  相似文献   

2.
We study Andreev bound states (ABS) and the resulting charge transport of a Rashba superconductor (RSC) where two-dimensional semiconductor (2DSM) heterostructures are sandwiched by spin-singlet s-wave superconductor and ferromagnet insulator. ABS becomes a chiral Majorana edge mode in the topological phase (TP). We clarify two types of quantum criticality about the topological change of ABS near a quantum critical point (QCP), whether or not ABS exists at QCP. In the former type, ABS has an energy gap and does not cross at zero energy in the nontopological phase. These complex properties can be detected by tunneling conductance between normal metal-RSC junctions.  相似文献   

3.
The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac point. Based on these features, we propose that a topological insulator quantum dot array can be operated as an electrically pumped continuous-wave THz laser. The proposed device can operate at room temperature, with power exceeding 10 mW and quantum efficiency reaching ~50%. This study may promote the usage of topological insulator quantum dots as an important source of THz radiation.  相似文献   

4.
Ryzhkov  M. S.  Kozlov  D. A.  Khudaiberdiev  D. A.  Kvon  Z. D.  Mikhailov  N. N. 《JETP Letters》2023,117(1):44-47
JETP Letters - Interference transport in mesoscopic samples of a two-dimensional topological insulator in CdHgTe quantum wells is studied for the first time. It is established that quasi-ballistic...  相似文献   

5.
We study the fractional quantum Hall states on the surface of a topological insulator thin film in an external magnetic field, where the Dirac fermion nature of the charge carriers have been experimentally established only recently. Our studies indicate that the fractional quantum Hall states should indeed be observable in the surface Landau levels of a topological insulator. The strength of the effect will however be different, compared to that in graphene, due to the finite thickness of the topological insulator film and due to the admixture of Landau levels of the two surfaces of the film. At a small film thickness, that mixture results in a strongly nonmonotonic dependence of the excitation gap on the film thickness. At a large enough thickness of the film, the excitation gap in the lowest two Landau levels are comparable in strength.  相似文献   

6.
We report transport measurements on Josephson junctions consisting of Bi_2Te_3 topological insulator(TI) thin films contacted by superconducting Nb electrodes.For a device with junction length L=134 nm,the critical supercurrent I_c can be modulated by an electrical gate which tunes the carrier type and density of the TI film.I_c can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state.In the p-type regime the Josephson current can be well described by a short ballistic junction model.In the n-type regime the junction is ballistic at 0.7 K T 3.8 K while for T 0.7 K the diffusive bulk modes emerge and contribute a larger I_c than the ballistic model.We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p-n junctions.Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.  相似文献   

7.
8.
We report momentum-resolved charge excitations in a one-dimensional (1D) Mott insulator studied using high resolution inelastic x-ray scattering over the entire Brillouin zone for the first time. Excitations at the insulating gap edge are found to be highly dispersive (momentum dependent) compared to excitations observed in two-dimensional Mott insulators. The observed dispersion in 1D cuprates ( SrCuO2 and Sr2CuO3) is consistent with charge excitations involving holons which is unique to spin-1/2 quantum chain systems. These results point to the potential utility of momentum-resolved inelastic x-ray scattering in providing valuable information about electronic structure of strongly correlated insulators.  相似文献   

9.
陈泽国  吴莹 《物理学报》2017,66(22):227804-227804
研究了圆环型波导依照蜂窝结构排列的声子晶体系统中的拓扑相变.利用晶格结构的点群对称性实现赝自旋,并在圆环中引入旋转气流来打破时间反演对称性.通过紧束缚近似模型计算的解析结果表明,没有引入气流时,调节几何参数,系统存在普通绝缘体和量子自旋霍尔效应绝缘体两个相;引入气流后,可以实现新的时间反演对称性破缺的量子自旋霍尔效应相,而增大气流强度,则可以实现量子反常霍尔效应相.这三个拓扑相可以通过自旋陈数来分类.通过有限元软件模拟了多个系统中边界态的传播,发现不同于量子自旋霍尔效应相,量子反常霍尔相系统的表面只支持一种自旋的边界态,并且它无需时间反演对称性保护.  相似文献   

10.
The quasilinear bands in the topologically trivial skutterudite insulator CoSb(3) are studied under adiabatic, symmetry-conserving displacement of the Sb sublattice. In this cubic, time-reversal and inversion symmetric system, a transition from trivial insulator to topological point Fermi surface system occurs through a critical point in which massless (Dirac) bands appear, and moreover are degenerate with massive bands. Spin-orbit coupling, while small due to the type of band character, coupled with tetragonal strain opens the gap required to give the topological insulator. The mineral skutterudite (CoSb(3)) is very near the critical point in its natural state.  相似文献   

11.
We investigate the efficiency of electrical manipulation in a two-dimensional topological insulator by inspecting the electronic states of a lateral electrical potential superlattice in the system. The spatial distribution of the electron density in the system can be tuned by changing the strength of the externally applied lateral electrical superlattice potential. This provides us the information about how efficiently one can manipulate the electron motion inside a two-dimensional topo- logical insulator. Such information is important in designing electronic devices, e.g., an electric field effect transistor made of the topological insulator. The electronic states under various conditions are examined carefully. It is found that the dispersion of the mini-band and the electron distribution in the potential well region both display an oscillatory behavior as the potential strength of the lateral superlattice increases. The probability of finding an electron in the potential well region can be larger or smaller than the average as the potential strength varies. These features can be attributed to the coupled multiple-band nature of the topological insulator. In addition, it is also found that these behaviors are not sensitive to the gap parameter of the two-dimensional topological insulator model. Our study suggests that the electron density manipulation via electrical gating in a two-dimensional topological insulator is less effective and more delicate than that in a traditional single-band semiconductor.  相似文献   

12.
We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies, similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators, the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking into account this shape, we show that a very exotic pair potential is induced on the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI interface, when an S/FI hybrid structure is formed on the TI surface.  相似文献   

13.
The effect of the magnetic field on the generation of an electric current in a two-dimensional electronic ratchet is theoretically studied. Mechanisms of the formation of magnetically induced photocurrent are proposed for a structure with a two-dimensional electron gas (quantum well, graphene, or topological insulator) with a lateral asymmetric superlattice consisting of metallic strips on the external surface of the structure. The ratchet with the spatially oscillating magnetic field generated by the ferromagnetic lattice, as well as the nonmagnetic ratchet placed in the uniform magnetic field both classically weak and strong quantizing, is considered. It is established that the ratio of the amplitude of the magnetic oscillations of photocurrent to the ratchet photocurrent in zero field can exceed two orders of magnitude.  相似文献   

14.
曾伦武  宋润霞 《物理学报》2012,61(11):117302-117302
利用电势和磁标势的第一类零阶贝塞尔函数的公式及拓扑绝缘体材料的本构关系, 推导了点电荷在电介质、 拓扑绝缘体和接地导体三个区域的感应电势及感应磁标势. 研究表明: 点电荷 在电介质、 拓扑绝缘体和接地导体中感应了像电荷和像磁单极; 感应像电荷和感应像磁单极的大小和正负除了与场源电荷、 拓扑绝缘体材料参数等因素有关外, 还与像电荷和像磁单极所处的空间位置有关.  相似文献   

15.
Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of low-dimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transport properties of these carbon nanomaterials are reviewed. Although these systems share the similar graphene electronic structure, confinement effects are playing a crucial role. Indeed, the lateral confinement of charge carriers could create an energy gap near the charge neutrality point, depending on the width of the ribbon, the nanotube diameter, the stacking of the carbon layers regarding the different crystallographic orientations involved. After reviewing the transport properties of defect-free systems, doping and topological defects (including edge disorder) are also proposed as tools to taylor the quantum conductance in these materials. Their unusual electronic and transport properties promote these carbon nanomaterials as promising candidates for new building blocks in a future carbon-based nanoelectronics, thus opening alternatives to present silicon-based electronics devices.  相似文献   

16.
拓扑绝缘体是当前凝聚态物理研究的热点.退相干效应对该体系的影响的研究不仅有重要的理论意义,而且也是实现未来量子器件的不可或缺的前期工作.文章作者从理论上研究了退相干对二维拓扑绝缘体特别是量子自旋霍尔效应的影响.研究结果表明,作为量子自旋霍尔效应的标志的量子化纵向电阻平台对不破坏自旋记忆的退相干效应(普通退相干)不敏感,但却对破坏自旋记忆的退相干效应(自旋退相干)非常敏感.因此,该量子化平台只能在尺寸小于自旋退相干长度的介观样品中存在,从而解释了量子自旋霍尔效应实验中所观测到的结果(见Science,2007,318:766).同时,文章作者还定义了一个新的物理量,即自旋霍尔电阻,并发现该自旋霍尔电阻也有量子化平台.特别是该量子化平台对两种类型的退相干都不敏感.这说明在宏观样品中也能观测到自旋霍尔电阻的量子化平台,因此更能全面地反映量子自旋霍尔效应的拓扑特性.  相似文献   

17.
The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within the quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.  相似文献   

18.
Recently, intrinsic antiferromagnetic topological insulator MnBi_2Te_4 has drawn intense research interest and leads to plenty of significant progress in physics and materials science by hosting quantum anomalous Hall effect, axion insulator state, and other quantum phases. An essential ingredient to realize these quantum states is the magnetic gap in the topological surface states induced by the out-of-plane ferromagnetism on the surface of MnBi_2Te_4.However, the experimental observations of the surface gap remain controversial. Here, we report the observation of the surface gap via the point contact tunneling spectroscopy. In agreement with theoretical calculations, the gap size is around 50 me V, which vanishes as the sample becomes paramagnetic with increasing temperature.The magnetoresistance hysteresis is detected through the point contact junction on the sample surface with an out-of-plane magnetic field, substantiating the surface ferromagnetism. Furthermore, the non-zero transport spin polarization coming from the ferromagnetism is determined by the point contact Andreev reflection spectroscopy.Combining these results, the magnetism-induced gap in topological surface states of MnBi_2Te_4 is revealed.  相似文献   

19.
We review our theoretical advances in tunable topological quantum states in three- and twodimensional materials with strong spin–orbital couplings. In three-dimensional systems, we propose a new tunable topological insulator, bismuth-based skutterudites in which topological insulating states can be induced by external strains. The orbitals involved in the topological band-inversion process are the d- and p-orbitals, unlike typical topological insulators such as Bi2Se3and BiTeI, where only the p-orbitals are involved in the band-inversion process. Owing to the presence of large d-electronic states, the electronic interaction in our proposed topological insulator is much stronger than that in other conventional topological insulators. In two-dimensional systems, we investigated 3d-transition-metal-doped silicene. Using both an analytical model and first-principles Wannier interpolation, we demonstrate that silicene decorated with certain 3d transition metals such as vanadium can sustain a stable quantum anomalous Hall effect. We also predict that the quantum valley Hall effect and electrically tunable topological states could be realized in certain transition-metal-doped silicenes where the energy band inversion occurs. These findings provide realistic materials in which topological states could be arbitrarily controlled.  相似文献   

20.
We investigate the algebraic structure of flat energy bands a partial filling of which may give rise to a fractional quantum anomalous Hall effect (or a fractional Chern insulator) and a fractional quantum spin Hall effect. Both effects arise in the case of a sufficiently flat energy band as well as a roughly flat and homogeneous Berry curvature, such that the global Chern number, which is a topological invariant, may be associated with a local non-commutative geometry. This geometry is similar to the more familiar situation of the fractional quantum Hall effect in two-dimensional electron systems in a strong magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号