首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. Pornsuwancharoen  P.P. Yupapin 《Optik》2010,121(20):1863-1868
We propose a novel system of a nano-waveguide that can be used to generate the continuous spectrum, i.e. white light. The simultaneous trapping and generation of short and millimeter waves can also be performed by using either bright or dark soliton. A system consists of two micro- and a nano-ring resonators that can be integrated into a single system. The large bandwidth is generated by a soliton pulse within a Kerr-type nonlinear medium where the continuous bandwidth or wavelength can be performed. The simultaneous dark-bright solitons conversion is performed and achieved. Results obtained have shown the potential of using the technique for continuing light spectra generation, where the filtering signals are allowed by using the suitable device parameters. The advantage is that the large bandwidth separation of the short and sub-millimeter waves can be obtained, which is allowed to form the simultaneous generation of short and millimeter waves within a single system. Further, light pulse can be trapped within a nano-waveguide, which is available to form the memory device.  相似文献   

2.
P.P. Yupapin  J. Ali 《Optik》2010,121(21):1925-1928
We propose the interesting results that a bright and dark soliton pulse can be localized within a nonlinear nano-waveguide. The system consists of nonlinear micro- and nano-ring resonators, whereas the soliton pulse can be input into the system and trapped within the nano-waveguide. A soliton input is chopped by the nonlinear effects known as chaos into smaller pulses. The required pulse is filtered and amplified, which can be controlled and localized within the nano-waveguide. The localized bright and dark solitons are trapped within a nano-waveguide by controlling the nano-waveguide input power, which means that the photons trapping is controlled by light.  相似文献   

3.
N. Pornsuwancharoen  P.P. Yupapin 《Optik》2010,121(13):1159-1163
We propose a novel optical system that can be used to trap (store) light coherently. The system consists of two micro and a nano-ring resonators that can be integrated into a single system, which can be employed to generate the large bandwidth by a soliton pulse within a Kerr type nonlinear medium. The balance between dispersion and nonlinear lengths of the soliton pulse exhibits the soliton behavior known as self-phase modulation, which introduces the optical output (i.e. gain) constant, which means that light pulse can be trapped, i.e. localized coherently within the nano-waveguide. The time independent soliton pulse is adiabatically localized within the nano-ring device. Results obtained have shown that the trapping of the localized temporal and spatial soliton pulses is achieved.  相似文献   

4.
A. Charoenmee  P.P. Yupapin 《Optik》2010,121(18):1670-1673
We propose the interesting results that a dark soliton pulse can be localized within a nonlinear nano-waveguide. The system consists of nonlinear micro and nano ring resonators, whereas the dark soliton can be input into the system and trapped within the nano-waveguide. A dark soliton pulse is input into a ring resonator and chopped to be the smaller pulses. The required pulse is filtered and amplified, which can be controlled and localized within the nano-waveguide. The localized bright soliton is also reviewed and discussed.  相似文献   

5.
B. Jukgoljun  S. Pipatsart  P.P. Yupapin  J. Ali 《Optik》2011,122(16):1492-1499
Multi-dark soliton pulses have been successfully generated by using forward and backward pumping of the S-band erbium doped fiber in the fiber optic loop, where the Stimulated Brillouin Scattering (SBS) is a nonlinear interaction between pump fields with Stokes field through acoustic wave. Results obtained have shown that the dark soliton trains can be generated and configured as the multi-optical tweezers. The advantage is that the generated tweezers are in the form of dynamic tweezers, where they can transmit/transport via the soliton communication link. The single dark soliton is also experimentally generated by using the different fiber optic scheme. We have also theoretically shown that the dynamic tweezers can be controlled and tuned, which is available for trapping and transportation in the communication link via a wavelength router. The quantum states of the transported atoms/molecules by the dynamic tweezers can be performed by using the quantum processing unit incorporating in the system.  相似文献   

6.
We propose a novel system of a nano-waveguide that can be used to generate the continuous optical spectrum, i.e. white light. A system consists of two micro-ring resonators and a nano-ring resonator that can be integrated into a single system. The large bandwidth signal is generated using a soliton pulse propagating within a Kerr-type nonlinear medium, whereas the continuous bandwidth or wavelength of light signal can be performed. Results obtained have shown the potential of using such a system for white light source generation and amplification, which is discussed. The amplified pulse can be stored within a nano-waveguide, which is allowed to form the continuous spectrum after amplification. Alternatively, the low-level solar radiation can be amplified, and the bandwidth signals can also be enlarged.  相似文献   

7.
N. Pornsuwancharoen  P.P. Yupapin 《Optik》2010,121(12):1111-1115
We propose a new system of a continuous variable quantum key distribution via a wavelength router in the optical networks. A large bandwidth signal is generated by a soliton pulse propagating within the micro ring resonator, which is allowed to form the continuous wavelength with large tunable channel capacity. There are two forms of localized soliton pulses proposed. Firstly, the required information is transmitted via the localized temporal soliton pulse. Secondly, the continuous variable quantum key distribution is formed by using the localized spatial soliton pulse via a quantum router and networks, which is formed by using and optical add/drop multiplexer incorporating in the network. The localized soliton pulses are available for add/drop signals to/from the optical network, where the high security and capacity information can be performed.  相似文献   

8.
N. Sangwara  P.P. Yupapin 《Optik》2010,121(14):1263-1267
We propose a new optical system that can be used to form the multi-soliton pulses within the micro-ring resonators. The system consists of two micro-ring resonators and an add/drop multiplexer that can be integrated into a single system. The large bandwidth signal is generated by using a soliton pulse propagating in a Kerr-type nonlinear medium. The tuned soliton pulses in either spatial or temporal modes are obtained by using the add/drop multiplexer. Results obtained have shown that the multi-soliton pulses can be localized coherently within the micro-ring waveguide. This is shown that the generation of the multi-soliton pulses within the micro-ring resonator is achieved, which is available for long-distance communication with dense wavelength division multiplexing (DWDM). The significant increase in channel number and spacing are obtained, whereas the large free spectrum range (FSR) of 600 pm is achieved.  相似文献   

9.
K. Sarapat  P.P. Yupapin 《Optik》2010,121(6):553-558
We propose a new concept of quantum soliton pulses generation using a soliton pulse in the micro ring resonators. Firstly, the chaotic soliton pulses are generated and circulated within the integrated micro ring resonators. Secondly, the specific second harmonic pulses are selected by using the appropriate ring parameters. The superposition of the second harmonic pulses within the micro ring devices introduces the randomly polarized photons within the micro ring device. The entangled photon visibility of the polarized photon is seen after passing the polarization control devices and projecting on the detectors. The optimum entangled photon visibility is obtained. The advantage of such a system is that the quantum repeater unit can be redundant for long distance quantum communication link, whereas the use of the system for multi-entangled photon sources and links is also available. The system degradation via the entangled photon states timing walk-off is also discussed.  相似文献   

10.
K. Tamee  S. Mitatha 《Optik》2011,122(16):1470-1473
We propose a new concept of a nano-sensing transducer system using a nano-waveguide. The small change in physical quantity affects to the change in device parameters such as refractive index or length which is relatively absorbed and observed by the resonant signals. In principle, the stored light pulse at the specified wavelength is generated by using a soliton propagating within the ring resonators, whereas a resonant signals can be stored within the nano-waveguide, i.e. a sensing transducer, which is formed by the sensing ring device. The induced change in the resonant signals by the surrounded environment is occurred, and can be detected by using the optical/quantum processor. Such a proposed device is namely suitable to perform the measurements in the nano-scale regime such as force, stress and temperature.  相似文献   

11.
N. Pornsuwanchroen  P.P. Yupapin 《Optik》2010,121(12):1123-1128
We propose a novel system of the simultaneous continuous variable quantum key distribution (QKD) and quantum dense coding (QDC) using a soliton pulse within the nonlinear micro-ring resonator devices. By using the appropriate soliton input power and nonlinear micro-ring parameters, the continuous signals are generated spreading over the spectrum. The polarized photons are formed by using the polarization control unit incorporating into the micro-ring system, which is allowed the different time slot entangled photon pair randomly formed. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography and dense coding within a single system is plausible, which is can be implemented within the mobile telephone hand set and networks.  相似文献   

12.
N. Pornsuwancharoen 《Optik》2010,121(23):2159-2161
We present a novel communication band of the tunable multi-Gaussian soliton system, whereas the large bandwidth signals of the spatial soliton pulses can be generated after propagating within the nonlinear ring resonator system. A Gaussian pulse input with 20 ns pulse width, 2 W peak power, the center wavelength at 1300 nm is propagated into the nonlinear ring resonator system. Using the appropriate parameters relating to the practical device such as micro-ring radii, coupling coefficients, linear and nonlinear refractive index, we found that the multi-soliton pulse obtained have shown the potential of application for a new dense wavelength division multiplexing (DWDM) band. The soliton pulse width and free spectrum range of 400 and 7 fm are obtained, respectively, which can be used to increase the channel capacity in soliton communication. Furthermore, the soliton power obtained is available for system and link redundancy, where the output soliton power of 12 W is achieved.  相似文献   

13.
S. Suchat  P.P. Yupapin 《Optik》2010,121(17):1540-1544
We propose a remarkably simple system of a continuous variable quantum key distribution using chaotic signals generated by a soliton pulse within a nonlinear micro-ring resonator system. By using the appropriate soliton input power and micro-ring parameters, continuous signals are generated spreading over the spectrum. Polarized photons are formed incorporating the polarization control unit into the micro-ring system, which allows different time slot entangled photons to be randomly formed. Two different frequency bands for up-down-link converters can be selected (filtered) and performed, which is available for the simultaneous up-down-link application in the telephone networks. Results obtained have shown that the application of such a system for continuous variable quantum cryptography via optical-wireless up-down-link converters within a single system is plausible.  相似文献   

14.
S. Mitatha  P.P. Yupapin 《Optik》2010,121(18):1665-1669
We propose a new system of a packet of quantum bits generation using a soliton pulse within a microring resonator. A quantum gate can be formed by using a polarization control unit incorporating into the system. The random signal and idler pairs can be formed within the photon correlation bandwidth, which can be generated, and randomly form the packet quantum bits, i.e. quantum packet switching. Each random code (logic) can be performed by combining the signal and idler of each entangled photon pair via the quantum gate. Results obtained have shown that the packet of quantum logic bits can be generated using the entangled photon pairs generated by the proposed system.  相似文献   

15.
N. Pornsuwancharoen  N. Sangwara 《Optik》2010,121(17):1535-1539
We propose a new system of an extremely narrow light pulse generation for optical microscopy applications using a nonlinear ring resonator system. The system consists of one nano and three micro-optical ring resonators, which can be used to generate the 50 fm (10−15 m) optical spectral width at the broad wavelength spectrum. By using a soliton pulse with a pulse width of 50 ps, peak power of 1 W, center wavelength at 550 nm, and after the soliton pulse is launched into the first ring device, the chaotic pulses are generated within the first ring. The chaotic filtering behaviors are performed by using the second and the third ring devices, whereas the extremely short pulse, i.e. narrow spectral width, can be generated by using the extended nano-ring device. The broad spectrum of the harmonic waves is generated and filtered, which is of use in optical tomography. Results obtained have shown that the generation of the broad spectrum of short pulse with width 100 fm and peak power 60 mW is achieved. The possibility of using such a system for nondestructive bio-cells microscopy, for visualizing bio-cells and for bio-cells tomography is also discussed in detail.  相似文献   

16.
P.P. Yupapin  N. Sangwara 《Optik》2010,121(8):732-738
We present the interesting results of nonlinear behaviors of a soliton pulse within a nonlinear micro ring resonator system, where the optical filter characteristics in terms of frequency, wavelength and time can be functioned by using the chaotic filter within the micro ring resonator system. There are three forms of applications using the chaotic soliton behaviors and optical filter characteristics presented. Firstly, the simultaneous up-link and down-link frequency bands can be filtered and the required frequency bands obtained. Secondly, we propose the simple system of an extremely narrow light pulse generation over the spectrum range, where the required wavelengths can be filtered and obtained. Finally, a simple system of fast light generation by using a soliton pulse circulating in the integrated micro ring devices is proposed. Using such a system, an attosecond pulse and beyond can be easily filtered and obtained.  相似文献   

17.
M. Bunruangses  S. Mitatha 《Optik》2010,121(23):2140-2143
We present a novel system of a Gaussian soliton generation using a 1.30 μm optical pulse in a nonlinear micro-ring resonator system, which can be used to form the soliton pulse trains within the new wavelength band. By using the suitable parameters, the soliton pulse trains with the center wavelength at 1.30 μm can be generated after the intense Gaussian pulse is input into the nonlinear micro-ring resonator system. The initial pulse bandwidth is enlarged and the signal amplified by the nonlinear Kerr effects type within the ring resonator. The simulation values are used associating with the practical device parameters, whereas the obtained results have shown that the wavelength enhancement of the center wavelength can be achieved. Furthermore, the maximum soliton output power of 12 W is obtained, which is available to perform the long-distance communication link. The common problem of soliton dispersion is minimized by the zero dispersion condition in this case. The major advantage of the proposed system is that the dense wavelength division of the center wavelength with the spectral width of 7.0 pm (10−15 m) and the free spectrum range of 400 pm can be generated and achieved. This is available for the used/installed wavelength enhancement, which can provide more available channel capacity in the existed public optical network.  相似文献   

18.
色散平坦渐减光纤中超连续谱的产生   总被引:2,自引:1,他引:1  
对双正交偏振光脉冲在色散平坦渐减光纤中传输时超连续谱的产生进行了计算和分析。结果表明,由于交叉相位调制效应的作用,双光脉冲可以产生比单光脉冲明显展宽且更为平坦的超连续谱。对于双基孤子脉冲,可以得到-20dB谱宽达388nm的平坦宽带超连续谱,比单基孤子脉冲产生的超连续谱谱宽增加72nm,交叉相位调制效应对超连续谱的产生起到增强的效果。当输入脉冲的抽运功率较低时,交叉相位调制效应对超连续谱的产生的增强效果更为显著,它极大地提高了超连续谱的产生的效率。数值计算的结果还表明,与其他高阶非线性效应相比,拉曼自频率移效应对超连续谱产生的影响更为明显。  相似文献   

19.
P. Yabosdee  P.P. Yupapin 《Optik》2010,121(23):2117-2121
We propose a new concept of a distributed sensing system using a nano-waveguide and an array waveguide. The small change in physical quantity affects the change in device parameters such as refractive index or length, which is relatively absorbed and observed by the resonant wavelength. In principle, the dense wavelength separation is generated by using a soliton pulse propagating within a ring resonator system, whereas a resonant signal can be stored within the nano-waveguide, i.e. a transducer, which is formed by the sensing device. Induced change in the resonant signal at each wavelength occurs, and can be detected by using the optical spectrum analyzer. Such a proposed device is suitable to perform the measurements in the nano-scale regime such as force, stress and temperature. Moreover, the distributed or multiplexed sensing applications are also available using the nano-waveguide sensing device incorporating the array waveguide, which is discussed in details. Quantum measurement using the same system is also described.  相似文献   

20.
A simple all optical system for stopping and storing light pulses is demonstrated. The system consists of an erbium-doped fiber amplifier (EDFA), a semiconductor optical amplifier (SOA), and a fiber ring resonator. The results show that the multisoliton generation with a free spectrum range of 2.4 nm and a pulse spectral width of 0.96 nm is achieved. The memory time of 15 min and the maximum soliton output power of 5.94 dBm are noted, respectively. This means that light pulses can be trapped, i.e., stopped optically within the fiber ring resonator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号