首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Acid dissociation constant, pKa, of protonated pyridine, determined in the polar protophobic aprotic solvent, acetone, has been compared with pKa values of the pyridinium ion in a variety of other polar solvents including aprotic protophobic ones, acetonitrile, benzonitrile, nitrobenzene, nitromethane, and propylene carbonate, in the protophilic aprotic dimethyl sulfoxide and N,N‐dimethylformamide, as well as in the amphiprotic methanol. On the basis of the set of these pKa values, the effect of the medium on the basicity of pyridine is discussed. Further, based on the cationic homoconjugation constants of pyridine conjugated with the pyridinium cation in the non‐aqueous solvents, the tendency of pyridine towards homoconjugation reactions has also been discussed. Finally, both the basicity of pyridine and its tendency towards cationic homoconjugation has been compared with analogous properties of pyridine N‐oxide.  相似文献   

2.
Acid–base equilibrium constants, i.e. acid dissociation, cationic homoconjugation and cationic heteroconjugation constants in 4-R-2,6-dimethylpyridine N-oxide systems (where R denotes methoxy-, methyl-, chloro- or nitro-group) in polar non-aqueous solvents: protophobic aprotic nitromethane, acetonitrile and acetone, protophilic aprotic N,N-dimethylformamide and amphiprotic methanol have been determined. The acidity constant values of protonated N-oxides in solvents studied have been found to change according to the substituent effect and to the sequence of acidity changes in water. This finding allowed to correlate the pKa values determined in water with those determined in the solvents studied. Further, it was found that the cationic homo- and heteroconjugation constant values increased with decreasing solvent basicity and with increasing basicity of the N-oxide, and in the case of heteroconjugating systems, with increasing basicity of the the proton acceptor.  相似文献   

3.
In the framework of our studies on acid=nbase equilibria in systems comprisingsubstituted pyridines and nonaqueous solvents, acid dissociation constants havebeen determined potentiometrically for a variety of cationic acids conjugatedwith pyridine and its derivatives in the polar protophobic aprotic solvent nitromethane. The potentiometric method enabled a check as to whether and to whatextent cationic homoconjugation equilibria of the BH+/B type, as well as cationicheteroconjugation equilibria in BH+/B1 systems without proton transfer, are setup in nitromethane. The equilibrium constants were compared with thosedetermined in water and two other polar protophobic aprotic solvents, propylenecarbonate and acetonitrile. The pK a values of acids conjugate to the N-bases innitromethane fall in the pK a range of 5.84 to 17.67, i.e., 6 to 7 pK a units, onaverage, higher than in water, 1 to 2 units higher than in propylene carbonate,and less than 1 unit lower than in acetonitrile. This means that the basicity ofthe pyridine derivatives increases on going from propylene carbonate throughnitromethane to acetonitrile. Further, it was found that the sequence of the pK achanges of the protonated amines was consistent in all three media, thus providingthe basis for establishing linear correlations among these values. In the majorityof the BH+/B systems in nitromethane, cationic homoconjugation equilibria havebeen established. The cationic homoconjugation constants, log K BHB+, arerelatively low, falling in the range 1.60–2.89. A comparison of the homoconjugationconstants in nitromethane with those in propylene carbonate and acetonitrile showsthat nitromethane is a more favorable solvent for the cationic homoconjugationequilibria than the other two solvents. Moreover, results of the potentiometricmeasurements revealed that cationic heteroconjugation equilibria were not presentin the majority of the BH+/B1 systems in nitromethane. The heteroconjugationconstant could be determined in one system only, with logdiK BHB1 + = 2.56.  相似文献   

4.
By using the potentiometric method, acidity constants have been determined in systems of tri- and tetra-substituted pyridine N-oxides. The potentiometric measurements in systems of four 4-chloropyridine N-oxide derivatives containing the chlorine atom at position 4 to the NO2 group and four bromine counterparts were carried out in polar non-aqueous solvents, viz. amphiprotic methanol (MeOH) and aprotic protophilic dimethyl sulfoxide (DMSO). It was found that in all the systems studied the pKa values were readily determinable (as indicated by small standard deviations) in MeOH, whereas in DMSO large standard deviations were obtained making the pKa values either hardly determinable or indeterminable from potentiometric measurements. Furthermore, it was demonstrated that the acidity constants of protonated N-oxides studied in MeOH changed according to the sequence of their acidity constants in water. It was also found that in the polar solvents studied, i.e. in the amphiprotic methanol and the highly basic aprotic dimethyl sulfoxide, the cationic homo-conjugation equlibrium constants could not be determined using potentiometric method. Also, by using ab initio methods at the RHF and MP2 levels and the PCM model, utilizing the Gaussian 6-31++G∗∗ basis set, energies and Gibbs free energies of the protonation reactions of the N-oxides have been determined. The energy parameters have been compared with acidity constants of the protonated N-oxides determined by potentiometric titration in methanol to establish a correlation between these approaches.  相似文献   

5.
Acid dissociation constants in methanol for eight substituted pyridine N-oxides having a wide range of acid-base properties, [quinoline N-oxide (bi-cyclic amine N-oxide) and pyridine (heterocyclic amine)] have been determined using the potentiometric titration method. A linear correlation between ourmethanol data and aqueous pK a values from the literature has been found. As in polar aprotic solvents cationic homoconjugation phenomenon has been found to be present for sufficiently basic N-oxides. The tendency of substituted pyridine N-oxides towards cationic homoconjugation in methanol is weaker than in polar aprotic solvents and increases with increasing basicity of N-oxides. It has also been found that, in contrast to polar aprotic solvents, the cationic homoconjugation phenomenon in methanol is much more pronounced for heterocyclic amines than their N-oxides.  相似文献   

6.
The standard enthalpies of solution of benzene at 25°C in alcohols (methanol, 1-propanol, 1-pentanol, 1-decanol), aprotic solvents (1,4-dioxane, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, propylene carbonate), and mixtures of methanol with these aprotic solvents were determined. Multiple regression analysis revealed the role of specific and nonspecific interactions in solvation of benzene in these solvents.  相似文献   

7.
The acidity constant (pK a) of eleven substituted anilinium ions and the dissociation constants of their perchlorate salts (pK salt) were determined in pure tetrahydrofuran by potentiometry and conductometry. The pK a values of the studied aniliniums extend downward the range of previously determined pK a values. The resolution of acid strength for cationic acids in tetrahydrofuran was compared with those obtained in other amphiprotic and aprotic solvents. It is shown that the resolution in tetrahydrofuran is higher than the ones in water and methanol, similar to those in acetone, dimethyl sulfoxide and isobutylmethylketone, but lower than those in acetonitrile and nitromethane.  相似文献   

8.
Acid–base equilibria were studied potentiometrically in (phenol + phenolate) systems involving nine substituted phenols with both electron-donating and electron-accepting substituents in a polar protophobic aprotic solvent, acetonitrile. To estimate the influence of the polarity of the medium on acid dissociation and anionic homoconjugation equilibria, the equilibrium constants were also determined in an (acetonitrile + cyclohexane) solvent in which the latter was a diluent that lowered the dielectric permittivity of the reaction medium, and compared with those determined in acetonitrile.  相似文献   

9.
10.
11.
Dissociation of trifluoromethanesulfonic acid in non-aqueous solvents has been investigated mainly by conductometry and compared with that of p-toluenesulfonic, methanesulfonic, fluorosulfuric and perchloric acids. The solvents used are dimethyl sulfoxide, N,N-dimethylacetamide, N,N-dimethylformamide, n-butyronitrile, propylene carbonate, acetonitrile, nitromethane, methyl isobutyl ketone and acetic acid. Trifluoromethanesulfonic acid is completely dissociated in rather basic solvents such as dimethyl sulfoxide, dimethylacetamide and dimethylformamide, while it is associated to some extent in the other solvents, especially in methyl isobutyl ketone and acetic acid. The strength of trifluoromethanesulfonic acid is almost the same as that of perchloric acid in all the solvents. Dissociation constants of the other acids are also obtained.  相似文献   

12.
The relative acidity constants (pKa) for 17 hydroxycoumarins in water, methanol, acetone (Ac), dimethylformide (DMFA), and dimethyl sulfoxide (DMSO) have been determined by Henderson's method. The existence of a linear relationship between pKa in water and pKa in acetone, dimethylformamide, and dimethyl sulfoxide has been established. From the pKa values the sequence of neutralization of the hydroxy groups has been determined: their acidic properties decrease in the sequence 4-OH > 7-OH > 6-OH > 8-OH. A quantitative evaluation of the conditions of titration in five solvents on the basis of the titration constants (pKt) and of the values of the potential jumps and the shape of the potentiometric titration curves has permitted acetone to be proposed as the optimum solvent for the performance of potentiometric analysis.All-Union Scientific-Research Institute of Drug Chemistry and Technology, Khar'kov. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 770–773, November–December, 1985.  相似文献   

13.
Using a UV-spectrophotometric method, an attempt has been made to estimate quantitatively the influence of traces of water in aprotic solvents on the acidic-basic equilibria involving heterocyclic N-oxides. The N-oxides under study were pyridine N-oxide (PyO), 4-methoxy-pyridine N-oxide (4-MeOPyO), and 2-, 3-, and 4-picoline N-oxide (2-, 3-, and 4-PicO). For particular N-oxide the UV-spectra of acetonitrile solutions containing the free base and/or its simple or semiperchlorate have been recorded. To carry out the calculations various equilibrium models which include the protolytic equilibrium with water and basic species present in the solvent have been tested using the program STOICHIO which is based on non-linear regression analysis. It turned out that apart from the acidic-basic dissociation of a protonated N-oxide and cationic homoconjugation (the equilibria which are usually considered in such systems) it is absolutely necessary to take into account the protolytic equilibrium between the cationic acid and water present as impurity. Implications concerning investigations of other equilibrium systems in aprotic solvents and, in particular, the quality of the acidity constants for the calibration agents used in potentiometry are discussed.  相似文献   

14.
The interaction of calix[3]thieno[1]pyrrole, 1, and halide and dihydrogen phosphate anions in a variety of solvents (acetonitrile, propylene carbonate, N,N-dimethylformamide, and dimethyl sulfoxide) has been investigated through 1H NMR, conductance measurements, and titration calorimetry. 1H NMR measurements reveal the sites of interaction of the ligand with the anions in CD3CN while the composition of the complex was determined through conductance measurements. A quantitative assessment of anion-ligand interactions is provided. Thus the thermodynamics of complexation of 1 with halide and dihydrogen phosphate anions in dipolar aprotic media at 298.15 K is reported. These data are interpreted in terms of the thermodynamics of transfer of reactants and product from a reference solvent (acetonitrile) to other solvents. The crucial role played by the solvent on the ability of the ligand to interact with anions and on the composition of the complex is demonstrated.  相似文献   

15.
The oxidation of 2-phenyl-3-arylaminoindoles (1a–e) has been studied in acetonitrile, dimethylformamide and propylene carbonate at a new type of platinum electrode with periodical renewal of the diffusion layer and at a rotating platinum electrode by cyclic voltammetry, d.c. and a.c. voltammetry, controlled potential coulometry and spectrometry (e.s.r. and u.v.). In the examined aprotic solvents and in the presence of a base (like water or diphenylguanidine) amines 1a–e undergo a two-electron oxidation to the corresponding imines. In a protophobic medium (acetonitrile or propylene carbonate) 1a–e are oxidized in two one-electron steps, the first of which leads to the formation of a cation radical (identified by e.s.r. spectrum), oxidizable at more positive potentials (second step). The second electron transfer, however, must be simultaneous with, or be immediately followed by, a very fast deprotonation reaction. The same e.e.c. sequence explains the observed bielectronic step of 1a–e in a protophilic aprotic solvent, like dimethylformamide.  相似文献   

16.
The solution‐phase behavior of three main‐chain viologen polymers, which are composed of isomeric xylyl units and triflimide as a counterion, was studied in methanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide as solvents microscopically under crossed polarizers. Each of them exhibited a lyotropic lamellar phase in both polar protic and aprotic solvents. Their C* for the formation of biphasic solutions (1–5 wt %) and concentrations (20–30 wt %) for the lyotropic solutions in methanol was much lower than those in polar aprotic solvents (20–71 and 60–81 wt %, respectively). Their high solubility, high C* for the formation of biphasic solutions, and high concentrations for the formation of lyotropic solutions in polar aprotic solvents were related to the significant reduction of strong ionic interactions between triflimide and 4,4′‐bipyridinium ions in each of these viologen polymers. They were the first examples of viologen polymers that exhibited a lyotropic phase in polar aprotic solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2015–2024, 2002  相似文献   

17.
In order to choose a solvent for performing potentiometric titration, the relative acidities of 22 flavonoids have been studied in water, methanol, acetone, dimethylformamide, and dimethyl sulfoxide. It has been established that the conditions of titration improve on passing from water in the following sequence of organic solvents: methanol < dimethylformamide < acetone < dimethyl sulfoxide.Kharkov Scientific-Research Institute of Pharmaceutical Chemistry. Translated from Khimiya Prirodnykh Soedinenni, No. 2, pp. 180–186, March–April, 1980.  相似文献   

18.
The relative acidity constants (pKa) for 17 hydroxycoumarins in water, methanol, acetone (Ac), dimethylformide (DMFA), and dimethyl sulfoxide (DMSO) have been determined by Henderson's method. The existence of a linear relationship between pKa in water and pKa in acetone, dimethylformamide, and dimethyl sulfoxide has been established. From the pKa values the sequence of neutralization of the hydroxy groups has been determined: their acidic properties decrease in the sequence 4-OH > 7-OH > 6-OH > 8-OH. A quantitative evaluation of the conditions of titration in five solvents on the basis of the titration constants (pKt) and of the values of the potential jumps and the shape of the potentiometric titration curves has permitted acetone to be proposed as the optimum solvent for the performance of potentiometric analysis.  相似文献   

19.
Photochemical reactions of N-vinylcarbazole (VCZ), studied in various solvents, were profoundly influenced by the atmosphere. In the deaerated system radical polymerization of VCZ occurred in various solvents, e.g., tetrahydrofuran, acetone, ethyl methyl ketone, acetonitrile, methanol, sulfolane, N,N-dimethylformamide (DMF), or dimethyl sulfoxide (DMSO). By contrast, when dissolved oxygen was present, cyclodimerization of VCZ occurred exclusively to give trans-1,2-dicarbazole-9-yl-cyclobutane in such polar, basic solvents as acetone, ethyl methyl ketone, acetonitrile or methanol. In stronger basic solvents, i.e., sulfolane, DMF, or DMSO, simultaneous radical polymerization and cyclodimerization of VCZ proceeded, the ratio of the cyclodimerization to the radical polymerization decreasing in the order, sulfolane > DMF > DMSO. In dichloromethane, on the other hand, cationic polymerization of VCZ occurred irrespective of the atmosphere. It is suggested that oxygen acts as an electron acceptor to the excited VCZ, electron transfer occurring in polar solvents from the excited VCZ to oxygen to give transient VCZ cation radical. The effect of solvent basicity on the photocyclodimerization of VCZ is discussed.  相似文献   

20.
The oxidations of methyl 4-nitrophenyl sulfide and sulfoxide by dimethyldioxirane, in acetone and mixtures of acetone with water, methanol, acetonitrile and hexane, have been followed by UV-Vis spectroscopy to monitor the decay of the substrates. The data show that, under all the conditions studied, both oxidations obey second-order kinetics. Grunwald-Winstein and Kamlet-Taft analyses of the influence of solvents on the second-order rate constants have been used to obtain mechanistic information on the two reactions. Activation parameters for the two oxidations in acetone and aqueous acetone have been calculated from rate constants for reactions in the temperature range 283-313 K and compared with those from sulfide and sulfoxide oxidations with other oxidants. For sulfoxide oxidations in acetone and 1-20% v/v water in acetone, the results support a concerted nucleophilic displacement by sulfur of oxygen from dimethyldioxirane with the rate being dependent on the solvent's polarity. Sulfide oxidations in acetone and 1-5% v/v water in acetone also proceed by a concerted mechanism. However, in the most polar solvent system studied, 20% v/v water in acetone, the mechanism changes in favour of a two-step reaction involving a betaine intermediate. Importantly, the sulfide oxidation shows a different solvent dependence to that of the sulfoxide, with the rate of oxidation being determined by the hydrogen bond donor capacity and electron-pair donicity of the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号