首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid equilibrium finite elements based on the direct approximation of the domain stress and boundary displacement fields are presented. The structure is divided into a far field, which is considered as an infinite super element, and a near field, which is in turn discretized into finite elements. The displacements in the domains of typical finite elements are obtained from the assumed domain stress field by using the dynamic equilibrium equations. The Helmholtz equation is satisfied in the domain of the infinite super element, and the domain stress fields are associated with elastic and compatible displacements. The resulting governing system is symmetric, sparse, and, if well done, positive. Numerical applications are presented to illustrate the performance of the formulation  相似文献   

2.
The periodic boundary displacement protocol leading to the optimum wall‐to‐fluid heat‐transfer rate, or to the most efficient mixing rate, in 2‐D annular Stokes flows is determined by calculating the steady periodic velocity and temperature fields. To obtain the steady periodic state one usually solves the dynamical system obtained after the spatial coordinates have been discretized. Here, we calculate the steady periodic state using an implicit method based on the discretization of the time coordinate over a period and the asymptotic regime is enforced by the periodicity condition in the computed temperature field. The obtained system of equations is solved using a Newton‐type iterative algorithm with invariant Jacobian. At each iteration step, the sparse linearized system is solved using a multi‐grid algebraic technique of rapid convergence. From a computational point of view and for the problem considered here, this method is an order of magnitude faster than the one based on a spatial discretization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the problem of magneto-thermoelastic interactions in an unbounded, perfectly conducting half-space whose surface suffers a time harmonic thermal source in the context of micropolar generalized thermoelasticity with fractional heat transfer allowing the second sound effects. The medium is assumed to be unstrained and unstressed initially and has uniform temperature. The Laplace–Fourier double transform technique has been used to solve the resulting non-dimensional coupled field equations. Expressions for displacements, stresses and temperature in the physical domain are obtained using a numerical inversion technique. The effects of fractional parameter, magnetic field and micropolarity on the physical fields are noticed and depicted graphically. For a particular model, these fields are found to be significantly affected by the above mentioned parameters. Some particular cases of interest have been deduced from the present problem. Numerical results predict finite speed of propagation for thermoelastic waves.  相似文献   

4.
A numerical method is presented for solving the variable coefficient Poisson equation on a two‐dimensional domain in the presence of irregular interfaces across which both the variable coefficients and the solution itself may be discontinuous. The approach involves using piecewise cubic splines to represent the irregular interface, and applying this representation to calculate the volume and area of each cut cell. The fluxes across the cut‐cell faces and the interface faces are evaluated using a second‐order accurate scheme. The deferred correction approach is used, resulting in a computational stencil for the discretized Poisson equation on an irregular (complex) domain that is identical to that obtained on a regular (simple) domain. In consequence, a highly efficient multigrid solver based on the additive correction multigrid (ACM) method can be applied to solve the current discretized equation system. Several test cases (for which exact solutions to the variable coefficient Poisson equation with and without jump conditions are known) have been used to evaluate the new methodology for discretization on an irregular domain. The numerical solutions show that the new algorithm is second‐order accurate as claimed, even in the presence of jump conditions across an interface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.  相似文献   

6.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.   相似文献   

7.
采用一种新型的杂交元模型和一种单胞模型来解决周期分布多边形夹杂角部的奇异性应力相互干涉的问题。新型杂交元模型是基于广义Hellinger-Reissner变分原理建立的,其中奇异性应力场分量和位移场分量是采用有限元特征分析法的数值特征解得到的。使用当前的新型杂交元模型,只需要在夹杂角部邻域的周界上划分一维单元,避免了像传统有限元模型那样需要划分高密度二维单元。文中给出了代表奇异性应力场强度的夹杂角部广义应力强度因子数值解,并考虑材料属性、夹杂尺寸和夹杂位置关系的影响。算例中,考虑了夹杂和基体完全接合的情况,并给出了考核例。结果表明:当前模型能得到高精度数值解,且收敛性好;与传统有限元法和积分方程方法相比,该模型更具有通用性,为非均质材料的细观力学分析打下了基础。  相似文献   

8.
A novel hybrid graded element model is developed in this paper for investigating thermal behavior of functionally graded materials (FGMs). The model can handle a spatially varying material property field of FGMs. In the proposed approach, a new variational functional is first constructed for generating corresponding finite element model. Then, a graded element is formulated based on two sets of independent temperature fields. One is known as intra-element temperature field defined within the element domain; the other is the so-called frame field defined on the element boundary only. The intra-element temperature field is constructed using the linear combination of fundamental solutions, while the independent frame field is separately used as the boundary interpolation functions of the element to ensure the field continuity over the interelement boundary. Due to the properties of fundamental solutions, the domain integrals appearing in the variational functional can be converted into boundary integrals which can significantly simplify the calculation of generalized element stiffness matrix. The proposed model can simulate the graded material properties naturally due to the use of the graded element in the finite element (FE) model. Moreover, it inherits all the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional FEM and boundary element method (BEM). Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show a good numerical accuracy.  相似文献   

9.
 A novel optical diagnostic technique, dual hologram shearing interferometry, for measuring density gradients of different phase objects is proposed and demonstrated. The lateral shearing is achieved by using a phase grating. A holographic interferometer has been developed and designed on the base of a single pass Z type conventional schlieren device. The interferometer’s scheme is insensitive to acoustical disturbances, similarly to the conventional schlieren layout, and is capable of recording holograms with a continuous wave laser during the wind tunnel run. The features of the technique make it tolerant to both the temporal coherence of the laser light source and to the relatively low, schlieren quality optical windows of the wind tunnel’s test section. The obtained reconstructed lateral shearing interferograms with a large region of overlap have high contrast and may have an arbitrary orientation and/or spacing of the background interference fringes. It is believed that the proposed approach will become a useful tool for visualization and accurate mapping of the density gradients of gas dynamic flow fields, in wind and shock tunnels, where acoustic noise problems may dramatically affect reference beam holographic schemes. Received: 9 January 1997 / Accepted: 12 April 1997  相似文献   

10.
The thermocapillary convection which results from both a temperature field as well as residual contamination applied at the surface of a spherical liquid system in a microgravity environment has been studied both analytically and numerically. Such an investigation is relevant to containerless materials processing in a microgravity environment. The analysis is linear. Temperature and concentration fields are steady, but have a non-axisymmetric spatial variation. The compound fluid drop system as well as the simple drop system are studied. Results are compared to those of Marangoni flow, driven only by a thermal field.  相似文献   

11.
During the machining of metals, plastic deformation and friction lead to the generation of heat in the workpiece, which results in thermomechanically coupled deformation. Recently, several numerical models of this highly coupled process have been produced in response to increased interest in high speed machining. It is important to characterize the thermal field in the cutting zone in order to completely verify these models of high speed machining and to direct further advancement in this area. In this work, HgCdTe infrared detectors are used to experimentally measure the temperature distribution at the surface of a workpiece during orthogonal cutting. From these temperature measurements, the heat generated in the primary shear zone and the friction zone can be examined and characterized. A modified Hopkinson bar technique has been developed to perform orthogonal machining at speeds ranging from 10 to 100 m/s. In the present work, a cutting velocity of 15 m/s is employed in all the tests in order to demonstrate the capability of the apparatus and characterize thermal fields during low speed machining. Temperature fields are obtained during the orthogonal cutting of aluminum as a function of depth of cut. It is seen that depth of cut can vary both the maximum temperature as well as the distribution of the temperature field in the aluminum workpiece. the maximum temperature increased with depth of cut (238°C for 1.5 mm cut, 207°C for 1.0 mm cut and 138°C for 0.5 mm cut) and the temperature field extended further beneath the cut surface with decreasing depth of cut.  相似文献   

12.
A variational method for post-processing of the velocity fields obtained by particle image velocimetry (PIV) is described. This method allows one to effectively reconstruct the flow field in the areas of the domain where the spurious vectors were discarded either by other filters or manually. If the spurious vectors cannot be removed, they are smoothed in with the surrounding field so that their effect is significantly reduced. The method is based on the application of dynamical constraints such as continuity, smoothness and matching to the original data. The results of the application of the developed algorithm to the velocity fields obtained by PIV in laboratory experiments with quasi-two-dimensional vortex dipoles are discussed.  相似文献   

13.
In this paper, based on the three-dimensional flow theory of plasticity, the fundametal equations for plane strain problem of elastic-perfectly plastic solids are presented. By using these equations the elastic-plastic fields near the crack tip growing step-by-step in an elastic incompressible-perfectly plastic solid are analysed.The first order asymptotic solutions for the stress field and velocity fields near the crack tip are obtained. The solutions show the evolution process of elastic unloading domain and the development process of central fan domain and reveal the possibility of the presence of the secondary plastic domain. The second order asymptotic solution for stress field is also presented.  相似文献   

14.
15.
An efficient domain decomposition method (DDM) is proposed for the dynamic analysis of stochastic acoustic fields with hybrid and localized uncertainties. The hybrid and localized uncertainties refer to the parameters that are associated with local properties of the acoustic fields and meanwhile are subjected to different kinds of randomness. To take advantage of the locally distributed feature of uncertain parameters, the full acoustic domain is divided into several sub-domains, along with each localized uncertain parameter being assigned to one specific sub-domain. In each sub-domain, the deterministic Helmholtz equation is transformed to a weak integral form and the discretized governing equation is obtained by employing Chebyshev orthogonal polynomials as admissible functions. The random or interval perturbation technique is applied to the individual governing equation according to the respective uncertainty type, whereby the stochastic governing equation is established. The original acoustic field is eventually recovered by the introduction of penalty functions to impose sound pressure continuity on the interfaces of sub-domains, and the (intervals of) sound pressure, together with its expectation and variance, can be subsequently obtained. The accuracy and efficiency of the proposed method are verified in several numerical examples by comparisons with the results given by brute force Monte Carlo simulations, and the DDM-based independent way of modelling and analysis proves to be quite effective and flexible for uncertainty quantification in acoustic fields.  相似文献   

16.
Peridynamics is a continuum theory based on a non-local approach and capable of dealing with discontinuous displacement fields. The paper presents a technique to couple Peridynamic grids and finite element meshes to solve static equilibrium problems. The domain is divided in two zones: one discretized by the Peridynamic grid and the other where the Finite Element Method is applied. The coupling is achieved by considering that Peridynamics bonds act only on Peridynamic nodes, whereas finite elements apply forces only on finite element nodes. The proposed method was applied to study 1D and 2D examples. No problem in the zone of the structure where the two approaches are merged is observed. The results show that the coupling method is very effective and its simplicity suggests it can be easily introduced in commercial finite element codes.  相似文献   

17.
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by-dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson’s equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.  相似文献   

18.
In this study, a two-dimensional steady state simultaneously developing laminar flow inside a micro-tube is investigated numerically under slip flow conditions. The first and second-order slip flow models have been implemented for the case where the viscous dissipation and axial conduction are included and a constant wall temperature boundary condition is specified. The results are obtained for several combinations of the Knudsen number Kn, the coefficient β and the Brinkman number Br. The study reveals a significant impact of slip flow and temperature jump on the hydrodynamic and thermal fields. A comparison of the first and second-order slip flow shows a considerable variation of the hydrodynamic flow and a weak impact on the thermal field particularly when the flow is fully developed.  相似文献   

19.
Equivalent generalized problems are obtained for new spectral problems described by ordinary differential equation of the fourth order with conjugation conditions. High-accuracy discretization algorithms are developed based on classes of piecewise-polynomial functions that may have a discontinuous first derivative at the point where the conjugation conditions are specified  相似文献   

20.
In this paper, finite element model is used to carry out thermal analysis of bead-on-plate welding. The model followed the proposed five step strategies which were then built into a model to obtain temperature history at the positions of thermocouples. Temperature field was also evaluated by comparing predicted weld bead with the actual weld bead. Using these proposed strategies, well matched temperature histories and temperature field have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号