共查询到3条相似文献,搜索用时 0 毫秒
1.
An analytical study of slow modulation has been made of cylindrical interface between two inviscid streaming fluids, in the presence of a relaxation of electrical charges at the interface, and stressed by an axial electric field. A new technique based on the perturbation theory, to derive the non-linear evolution equations has been introduced. These equations are combined to yield a non-linear Ginzburg–Landau equation and a non-linear modified Schrödinger equation describing the evolution of wave packets. The linear analysis showed that the streaming has a destabilizing effect and the electric field has stabilizing influence associated with parameters condition involving the electric conductivity and permittivity of the fluids. While the non-linear approach indicated that the streaming may become unstable for sufficiently high velocities, with a new condition on the material properties, involving weak electric relaxation times in both fluids. 相似文献
2.
Hitoshi Fujimoto Yosuke Oku Tomohiro Ogihara Hirohiko Takuda 《International Journal of Multiphase Flow》2010
The collision of single water droplets with a hot Inconel 625 alloy surface was investigated by a two-directional flash photography technique using two digital still cameras and three flash units. The experiments were conducted under the following conditions: the pre-impact diameters of the droplets ranged from 0.53 to 0.60 mm, the impact velocities ranged from 1.7 m/s to 4.1 m/s, and the solid surface temperatures ranged from 170 °C to 500 °C. When a droplet impacted onto the solid at a temperature of 170 °C, weak boiling was observed at the liquid/solid interface. At temperatures of 200 or 300 °C, numerous vapor bubbles were formed. Numerous secondary droplets then jetted upward from the deforming droplet due to the blowout of the vapor bubbles into the atmosphere. No secondary droplets were observed for a surface temperature of 500 °C at the low-impact Weber numbers (∼30) associated with the impact inertia of the droplets. Experiments using 2.5-mm-diameter droplets were also conducted. The dimensionless collision behaviors of large and small droplets were compared under the same Weber number conditions. At temperatures of less than or equal to 300 °C, the blowout of vapor bubbles occurred at early stages for a large droplet. At a surface temperature of 500 °C, the two dimensionless deformation behaviors of the droplets were very similar to each other. 相似文献
3.
Hitoshi Fujimoto Yu Shiotani Albert Y. Tong Takayuki Hama Hirohiko Takuda 《International Journal of Multiphase Flow》2007
The collision dynamics of water droplets impacting onto a solid is studied by means of three-dimensional computer simulations. The Navier–Stokes equations for unsteady, incompressible, viscous fluids in the three-dimensional Cartesian coordinate system are approximated and solved by a finite difference method. The volume-of-fluid (VOF) technique is used to track the free liquid surface. Normal and oblique collisions of droplets with the substrate are simulated at low droplet impact inertia. The effect of impact angle on the deformation behavior of droplets is investigated. The experimental observations and the numerical results are in reasonable agreement. Theoretical aspects of the physics of the collision phenomena are addressed. 相似文献