首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanofluid (NF) materials consisting of glycerol (Gly) and different inorganic nano oxides (TiO2, ZnO, Al2O3, and SiO2 for the oxides concentration of 0.01 wt% to the weight of Gly base fluid) were prepared by a two-step method through ultrasonic cavitation process. These nanofluids were investigated by employing an X-ray diffractometer (XRD), ultraviolet–visible (UV–Vis) spectrophotometer, 20 Hz to 1 MHz frequency range dielectric relaxation spectroscopy (DRS), ultrasonic interferometer, and rotational viscometer. The multiphysics of these nanofluids includes structural and optical properties, dielectric permittivity, electrical conductivity, conductivity relaxation, ultrasound velocity, adiabatic compressibility, acoustic impedance, viscosity, density, thermal conductivity, and viscoacoustic relaxation were characterized. The XRD patterns identified monodispersed and stable suspensions of these different characteristic nanoparticles in the hydrogen-bonded 3D supramolecular structure of ultra-high viscous glycerol fluid which were supported by their UV–Vis absorbance analyses. The energy band gap values of the TiO2 and ZnO containing nanofluids were found primarily ruled by the characteristic optical properties of these oxides nanomaterials. The complex dielectric and various electrical functions studied at 25 °C revealed that the suspension of different oxide nanoparticles in the glycerol fluid increased the static permittivity whereas reduced the direct current electrical conductivity which showed strong conductivity relaxation process dependence. The rheological measurements of the formulated nanofluids were performed over a shear rate range of 0.4–40 s−1 at temperatures of 25–55 °C. The linear relationship between shear rate and shear stress and also the shear rate-independent viscosity revealed the Newtonian behaviour of these nanofluids. The shear viscosity non-linearly decreased with the increase of temperature and exhibited the Arrhenius behaviour for all different oxides containing Gly-based nanofluids. The acoustic parameters of the nanofluids were altered unevenly with types of nano oxides and inferred some structure-property correlations. The promising technologically useable properties of these nanofluids were expected to impact their potential applications in optoelectronics, UV-blocking, sensing, nanodielectrics, energy storing and electric insulation, heat transfer systems, and also in materials processing for the development of innovative soft condensed devices.  相似文献   

2.
The present study focused on thermal conductivity and viscosity of alumina nanoparticles, at low volume concentrations of 0.01–1.0 % dispersed in the mixture of ethylene glycol and water (mass ratio, 60:40). Sodium dodeobcylbenzene sulfonate (SDBS) was applied for better dispersion and stability of alumina nanoparticles and study of its influence on both thermal conductivity and viscosity. The thermal conductivity established polynomial enhancement pattern with increase of volume concentration up to 0.1 % while linear enhancement was obtained at higher concentrations. In addition, thermal conductivity was enhanced with the rise of temperature. However, the augmentation was negligible compared to that obtained with increase of volume concentration. In contrast, viscosity data showed remarkable reduction with increase of temperature. Meanwhile, viscosity of nanofluids enhanced with loading of alumina nanoparticles. Thermal conductivity and viscosity measurements showed higher values over theoretical predictions. Results showed SDBS at different concentrations has distinct influence on thermal conductivity and viscosity of nanofluid.  相似文献   

3.
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Many attempts have been made to investigate its thermal conductivity and viscosity, which are important thermophysical properties. No definitive agreements have emerged, however, about these properties. This article reports the thermal conductivity and dynamic viscosity of nanofluids experimentally. TiO2 nanoparticles dispersed in water with volume concentration of 0.2–2 vol.% are used in the present study. A transient hot-wire apparatus is used for measuring the thermal conductivity of nanofluids whereas the Bohlin rotational rheometer (Malvern Instrument) is used to measure the viscosity of nanofluids. The data are collected for temperatures ranging from 15 °C to 35 °C. The results show that the measured viscosity and thermal conductivity of nanofluids increased as the particle concentrations increased and are higher than the values of the base liquids. Furthermore, thermal conductivity of nanofluids increased with increasing nanofluid temperatures and, conversely, the viscosity of nanofluids decreased with increasing temperature of nanofluids. Moreover, the measured thermal conductivity and viscosity of nanofluids are quite different from the predicted values from the existing correlations and the data reported by other researchers. Finally, new thermophysical correlations are proposed for predicting the thermal conductivity and viscosity of nanofluids.  相似文献   

4.
One of the most important features of nanofluids is their thermal conductivity. In this article, a new model for thermal conductivity is proposed based on the combination of a statistical model and thermal convection caused by Brownian motion of nanoparticles with considering the effect of interfacial nanolayers among nanoparticles and base fluids. This model is compared with Al2O3 in deionized water and CuO in deionized water (based nanofluids of spherical particles) using a number of theoretical and experimental thermal conductivity models, after that the experimental results have been made available in the open literature. In this model, an interfacial nanolayer is influenced directly on both parts of static and dynamic effective thermal conductivity. The present model shows good agreement with the experimental result of nanofluids and gives better predictions compared to models used for nanofluids in this article. This model is purely theoretical and in order to achieve it, experimental results have no effect.  相似文献   

5.
Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.  相似文献   

6.
A microfluidic chemical solution method is developed for the synthesizing Cu nanofluids.The method replaces batch-based macroreactors in the conventional chemical solution method by continuous-flow microfluidic microreactors,thereby enabling the synthesis of nanofluids with various microstructures.The Cu nanofluids synthesized by this technology show a better stability,remaining stable even after more than 100h standing.The measured thermal conductivity shows that the presence of nanoparticles can either upgrade or downgrade fluid conductivity,a phenomenon predicted by the recent thermal-wave theory of nanofluids.  相似文献   

7.
Experimental investigations and theoretical determination of effective thermal conductivity and viscosity of Al2O3/H2O nanofluid are reported in this paper. The nanofluid was prepared by synthesizing Al2O3 nanoparticles using microwave assisted chemical precipitation method, and then dispersing them in distilled water using a sonicator. Al2O3/water nanofluid with a nominal diameter of 43 nm at different volume concentrations (0.33–5%) at room temperature were used for the investigation. The thermal conductivity and viscosity of nanofluids are measured and it is found that the viscosity increase is substantially higher than the increase in thermal conductivity. Both the thermal conductivity and viscosity of nanofluids increase with the nanoparticle volume concentration. Theoretical models are developed to predict thermal conductivity and viscosity of nanofluids without resorting to the well established Maxwell and Einstein models, respectively. The proposed models show reasonably good agreement with our experimental results.  相似文献   

8.
The efficiency and effectiveness of solar energy capture and storage are to a large extent functions of the heat transfer and storage capacity of the medium used. This paper investigates the potential of using carbon nanotube (CNT)-glycol nanosuspension as such a medium, prepared by freeze drying-ultrasonic dispersing after oxidation treatment with HNO3. The influences of the mass fraction of CNTs glycol nanofluids and temperatures on photo-thermal properties, thermal conductivities and rheological behavior were investigated. The results show that CNTs with oxidation treatment exhibited good dispersing performance. Strong optical absorption of the CNTs glycol nanofluids was detected in the range of 200–2500 nm. At room temperature, 18% enhancement was found in the photo-thermal conversion efficiency of the 0.5% mass fraction CNTs glycol nanofluids in comparison to the basic fluids, without significant increase in viscosity. At 55 °C, CNTs glycol nanofluids with 4.0% mass fraction exhibited much lower viscosity and 25.4% higher thermal conductivity in comparison to that of pure glycol at room temperature.  相似文献   

9.
A methodology is proposed for predicting the effective thermal conductivity of dilute suspensions of nanoparticles (nanofluids) based on rheology.The methodology uses the rheological data to infer microstructures of nanoparticles quantitatively,which is then incorporated into the conventional Hamilton-Crosser equation to predict the effective thermal conductivity of nanofluids.The methodology is experimentally validated using four types of nanofluids made of titania nanoparticles and titanate nanotubes dispersed in water and ethylene glycol.And the modified Hamilton-Crosser equation successfully predicted the effective thermal conductivity of the nanofluids.  相似文献   

10.
The thermal conductivities (k) of aqueous alumina nanofluids of various particle shapes (rods, bricks, blades) were measured at the dynamic state for the first time. The dynamic k was measured under torsional flows by using a homemade parallel-plate system. The homemade system was validated by numerical simulations and experiments with homogeneous liquids. All the nanofluids tested here showed decreasing k with increasing shear rate. This newly observed phenomenon was named ‘shear-reducing thermal conductivity.’ The dispersion characteristics were characterized by the dynamic light scattering (DLS) and rheological techniques. From the rheological properties of nanofluids it was inferred that the alumina nanofluids should have network structures and these microstructures should be destroyed or deformed by shearing. But not all the networks were destroyed by shearing. The DLS data revealed that some nanoparticles in nanofluids should exist as individual particles. The effective medium theory cannot explain the shear-reducing characteristics of nanofluids at the dynamic state. The rheological data imply that the heat percolation through the network may not be the sole reason for heat transfer enhancement in nanofluids. It is suggested that the Brownian motion of the primary particles cannot be excluded in heat conduction through nanofluids.  相似文献   

11.
A methodology is proposed for predicting the effective thermal conductivity of dilute suspensions of nanoparticles (nanofluids) based on rheology. The methodology uses the rheological data to infer microstructures of nanoparticles quantitatively, which is then incorporated into the conventional Hamilton-Crosser equation to predict the effective thermal conductivity of nanofluids. The methodology is experimentally validated using four types of nanofluids made of titania nanoparticles and titanate nanotubes dispersed in water and ethylene glycol. And the modified Hamilton-Zrosser equation successfully predicted the effective thermal conductivity of the nanofluids.  相似文献   

12.
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton–Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.  相似文献   

13.
Review of nanofluids for heat transfer applications   总被引:2,自引:0,他引:2  
Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first repotted about a decade ago,though much controversy and inconsistency have been reported,and insufficient understanding of the formulation and mechanism of nanofluids further limits their applications.This work presents a critical review of research on heat transfer applications of nanofluids with the aim of identifying the limiting factors so as to push forward their further development.  相似文献   

14.
Thermal conductivity enhancement of nanofluids is very attractive to thermal and heat transfer engineering, however its mechanism is not clear yet. In this study, it is proposed that the surface charge state of nanoparticles is to explain the thermal conductivity enhancement of nanofluids. By comparing to the previous reported results, it is shown that the interparticle interaction due to the surface charge state is the most important factor to increase of thermal conductivity of nanofluids.  相似文献   

15.
Na2CO3/MgO composites with added multi-walled carbon nanotubes (MWCNTs) were prepared and tested as phase change materials (PCMs) for thermal energy storage. Na2CO3/MgO composite PCMs were prepared and their chemical compatibility and thermal stability were studied. MWCNTs introduced with Na2CO3/MgO composite PCMs were also investigated and scanning electron microscopy (SEM) characterization was used to demonstrate the uniform dispersion of MWCNTs in Na2CO3/MgO composite PCMs. The composites with added MWCNTs still display good thermal stability with mass losses lower than 5%. Introducing MWCNTs into composite Na2CO3/MgO PCMs by material formation/calcination signifi.cantly enhances the thermal conductivity of the composite PCMs. The thermal conductivity of the composite PCMs was found to increase with an increase in the weight fraction of the added MWCNTs and an increase in the testing temperature. This study may present a promising way to prepare high temperature phase change materials with superior properties such as improved thermal stability.  相似文献   

16.
Copper oxide nanoparticles (∼40 nm) are dispersed in gear oil (IBP Haulic-68) at different volume fractions (0.005-0.025) with oleic acid added as a surfactant to stabilize the system. Prepared nanofluids are characterized by Fourier Transform Infrared spectroscopy (FTIR) and Dynamic light scattering (DLS) measurements. DLS data confirmed the presence of agglomerated nanoparticles in the prepared nanofluids. Thermal conductivity measurements are performed both as a function of CuO volume fraction and temperature between 5 and 80 °C. An enhancement in thermal conductivity at 30 °C of 10.4% with 0.025 volume fraction of CuO nanoparticle loading is observed. Measured volume fraction dependence of the thermal conductivity enhancement at room temperature is predicted fairly well considering contributions from both nanolayer at the solid-liquid interface and particle agglomeration in the suspension, as visualized by Feng et al.  相似文献   

17.
Forced convection heat transfer of non-Newtonian nanofluids in a circular tube with constant wall temperature under turbulent flow conditions was investigated experimentally. Three types of nanofluids were prepared by dispersing homogeneously γ-Al2O3, TiO2 and CuO nanoparticles into the base fluid. An aqueous solution of carboxymethyl cellulose (CMC) was used as the base fluid. Nanofluids as well as the base fluid show shear-thinning (pseudoplastic) rheological behavior. Results indicate that the convective heat transfer coefficient of nanofluids is higher than that of the base fluid. The enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. The increase in the convective heat transfer coefficient of nanofluids is greater than the increase that would be observed considering strictly the increase in the effective thermal conductivity of nanofluids. Experimental data were compared to heat transfer coefficients predicted using available correlations for purely viscous non-Newtonian fluids. Results show poor agreement between experimental and predicted values. New correlation was proposed to predict successfully Nusselt numbers of non-Newtonian nanofluids as a function of Reynolds and Prandtl numbers.  相似文献   

18.
This article reports a comparison of the differences between using measured and computed thermophysical properties to describe the heat transfer performance of TiO2–water nanofluids. In this study, TiO2 nanoparticles with average diameters of 21 nm and a particle volume fraction of 0.2–1 vol.% are used. The thermal conductivity and viscosity of nanofluids were measured by using transient hot-wire apparatus and a Bohlin rotational rheometer, respectively. The well-known correlations for calculating the thermal conductivity and viscosity of nanofluids were used for describing the Nusselt number of nanofluids and compared with the results from the measured data. The results show that use of the models of thermophysical properties for calculating the Nusselt number of nanofluids gave similar results to use of the measured data. Where there is a lack of measured data on thermophysical properties, the most appropriate models for computing the thermal conductivity and viscosity of the nanofluids are the models of Yu and Choi and Wang et al., respectively.  相似文献   

19.
A high accuracy, counter flow double pipe heat exchanger system is designed for the measurement of convective heat transfer coefficients with different nanofluids. Both positive and negative enhancement of convective heat transfer of alumina nanofluids are found in the experiments. A modified equation was proposed to explain above phenomena through the physic properties of nanofluids such as thermal conductivity, special heat capacity and viscosity.  相似文献   

20.
The behavior of nanofluids containing cylindrical nanoparticles are investigated numerically inside a two‐sided lid‐driven differentially heated square cavity to gain insight into the convective recirculation and flow processes induced by a nanofluid. The physical properties of the base fluid such as viscosity, thermal conductivity and thermal expansion coefficient are, respectively, assumed to be temperature independent (taking the mean temperature of the left and right walls) and temperature dependent. A model is developed to analyze the behavior of nanofluids taking into account the nanoparticle volume fraction whereas the transport equations are solved numerically with finite volume approach using SIMPLEC algorithm. The left and right moving walls are maintained at different constant temperatures while the upper and bottom walls are thermally insulated. The directions of the moving walls were considered in a way that the force and natural convections aid each other. The governing parameter Richardson number was 0.1<Ri<50.0 but due to space constraints only the results for 0.1<Ri<10.0 from fluid flow are presented. It was found that the temperature dependency of physical properties at different Richardson numbers and nanoparticle volume fractions affects the fluid flow and heat transfer in the cavities. Finally, comparisons between the behaviors of the average Nusselt number at the left wall for two cases are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号