首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results from an experimental investigation conducted on different turbine designs for an automotive turbocharger. The design progression was based on a commercial nozzleless unit that was modified into a variable geometry single and twin-entry turbine. The main geometrical parameters were kept constant for all the configurations and the turbine was tested under steady flow conditions.A significant depreciation in efficiency was measured between the single and twin-entry configuration due to the mixing effects. The nozzleless unit provides the best compromise in terms of performance at different speeds.The twin-entry turbine was also tested under partial and unequal admissions. Based on the test results a method to determine the swallowing capacity under partial admission given the full admission map is presented. The test results also showed that the turbine swallowing capacity under unequal admission is linked to the full admission case.  相似文献   

2.
Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient.  相似文献   

3.
This paper presents numerical and experimental investigation of the performance and internal flow field characteristics of twin-entry radial inflow turbines at full and extreme partial admission conditions. The turbine is tested on a turbocharger test facility, which was developed for small and medium size turbochargers. Experimental results show that the lowest efficiency corresponds to extreme conditions. Therefore, flow field analyzing is employed to consider these conditions. The flow pattern in the volute and impeller of a twin-entry turbine is analyzed using an in-house fully three-dimensional viscous flow solver. The computational performance results are compared with the experimental results and good agreement is found. The flow field at the outlet of the turbine is investigated using a five-hole pressure probe; the numerical results are also compared with experimental measurements at the outlet of the rotor. For the volute, results show that lowest entropy gain factor corresponds to the extreme conditions, particularly when shroud side entry is fully closed. At the inlet of the rotor for equal admission conditions, the incidence angle is mostly in the optimum values. However, large variation in the incidence angle is seen in the extreme conditions, which lead to larger incidence losses and consequently a lower efficiency. In addition, entropy distribution contours corresponding to the exit plane are considered. For full admission, the location of low entropy gain factor at this plane occupies a region near the shroud side of suction surface as well as near the hub side of the pressure surface that corresponds to a region of high absolute flow angle. However, for the extreme cases, the low entropy gain factor occupies a relatively larger region near the shroud side than full admission. So, higher loss generation is noted at the extreme cases. Moreover, this entropy gain factor region is increased when shroud side entry is fully closed.  相似文献   

4.
A double suction centrifugal machine has been studied, both experimentally and numerically, operating as a pump and as a turbine. Experimentally, the static performance of the machine working as a pump was obtained. These measurements were compared with equivalent numerical results from a URANS calculation. As a second step, the numerical results have been exploited to get detailed information about the flow in both operating modes (pump and turbine). The main goals of the study are, first, the validation of the numerical procedure proposed and second, the possible turbine operation of the impeller, which could point out a wider working range for the machine. The first aspect is handled by detailed analysis in the pump mode, according to previous experience of the research group. The second objective is obtained by using the numerical model to explore the flow fields obtained, when working in an inverse mode. Therefore, the presented results join the use of a numerical methodology and the turbine mode of operation for a centrifugal impeller, providing insight into the flow characteristics. When working as a pump, the flow at the suction side is characterized by the existence of an inlet tongue, which tends to enforce a uniform flow for the nominal conditions. For the turbine mode, flow patterns in the impeller, volute and suction regions are carefully investigated. The influence of the specific geometrical arrangement is also considered for this operation mode. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Longitudinal dynamics of a tracked vehicle: Simulation and experiment   总被引:1,自引:0,他引:1  
In recent years virtual dynamic system simulation has become very important in the design and development stage, as new strategies can be examined without expensive measurements and with reduced time. This paper describes the development of a simulation model for transient analysis of the longitudinal dynamics of a heavy tracked vehicle. The driving inputs for this simulation model are obtained from a powertrain model. The main elements of the powertrain include the engine, Torque Converter (TC), transmission and drivetrain. Here the engine is modeled based on the engine maps from steady-state experiments. The TC is modeled based on its characteristic map from experiments. A fairly simple transmission model is used which is based on static gear ratios assuming small shift times. The final drivetrain model however includes the rotational dynamics of the sprocket. The simulation model developed is validated by comparing the predicted values with the measured data from experiments. The results have demonstrated that the developed model is able to predict fairly accurately the acceleration and braking performance of the heavy tracked vehicle on both soft and hard terrain.  相似文献   

6.
朱翀  王同光  钟伟 《力学与实践》2013,35(5):17-22,90
广义致动盘方法是通过引入体积力代替叶片的致动盘技术与三维Navier-Stokes 方程相结合来获得风力机周围流场信息的一种方法. 该方法避免了花费大量网格与计算资源去求解风力机叶片的附面层,从而可以把更多的网格与计算资源用于风力机尾流流场的模拟,非常适合用于风力机尾流流场的研究. 以NH1500风力机为计算模型,将常规CFD (computational fluid dynamics) 方法与广义致动盘方法计算所得的叶片载荷分布进行比较,以验证广义致动盘方法的可行性. 然后使用广义致动盘方法对风场中串列风力机进行数值模拟,研究串列风力机之间间距变化时,上游风力机产生的尾流对下游风力机的干扰影响.  相似文献   

7.
 The film cooling performance on a convex surface subjected to zero and favourable pressure gradient free-stream flow was investigated. Adiabatic film cooling effectiveness values were obtained for five different injection geometries, three with cylindrical holes and two with shaped holes. Heat transfer coefficients were derived for selected injection configurations. CO2 was used as coolant to simulate density ratios between coolant and free-stream close to gas turbine engine conditions. The film cooling effectiveness results indicate a strong dependency on the free-stream Mach number level. Results obtained at the higher free-stream Mach number show for cylindrical holes generally and for shaped holes at moderate blowing rates significant higher film cooling effectiveness values compared to the lower free-stream Mach number data. Free-stream acceleration generally reduced adiabatic film cooling effectiveness relative to constant free-stream flow conditions. The different free-stream conditions investigated indicate no significant effects on the corresponding heat transfer increase due to film injection. The determined heat flux ratios or film cooling performance indicated that coolant injection with shaped film cooling holes is much more efficient than with cylindrical holes especially at higher blowing rates. Heat flux penalties can occur at high blowing rates when using cylindrical holes. Received on 29 May 2000  相似文献   

8.
This paper presents highly resolved large eddy simulations (LES) of an internal combustion engine (ICE) using an immersed boundary method (IBM), which can describe moving and stationary boundaries in a simple and efficient manner. In this novel approach, the motion of the valves and the piston is modeled by Lagrangian particles, whilst the stationary parts of the engine are described by a computationally efficient IBM. The proposed mesh-free technique of boundary representation is simple for parallelization and suitable for high performance computing (HPC). To demonstrate the method, LES results are presented for the flow and the combustion in an internal combustion engine. The Favre-filtered Navier-Stokes equations are solved for a compressible flow employing a finite volume method on Cartesian grids. Non-reflecting boundary conditions are applied at the intake and the exhaust ports. Combustion is described using a flame surface density (FSD) model with an algebraic reaction rate closure. A simplified engine with a fixed axisymmetric valve (see Appendix A) is employed to show the correctness of the method while avoiding the uncertainties which may be induced by the complex engine geometry. Three test-cases using a real engine geometry are investigated on different grids to evaluate the impact of the cell size and the filter width. The simulation results are compared against the experimental data. A good overall agreement was found between the measurements and the simulation data. The presented method has particular advantages in the efficient generation of the grid, high resolution and low numerical dissipation throughout the domain and an excellent suitability for massively parallel simulations.  相似文献   

9.
考虑S型与H型垂直轴风力机的特点,设计了一种新型升阻混合型垂直轴风力机,采用CFD法计算其启动与气动性能。结果表明,原始H型垂直轴风力机数值结果与试验值在各工况下吻合良好;新型升阻混合型垂直轴风力机不同方位角下的启动力矩均大于原始H型风力机,最小及最大值分别提升232%和83.3%;S型风轮输出功率随叶片重叠比增加而减小,完全重叠时输出功率基本为0;新型升阻混合型垂直轴风力机最大风能利用率为0.298,具有更复杂的流场特性。  相似文献   

10.
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multiobjective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines.  相似文献   

11.
Discharge coefficients for flow through holes normal to a rotating shaft   总被引:2,自引:0,他引:2  
A possible design for a more compact gas turbine engine uses contra-rotating high pressure (HP) and intermediate pressure (IP) turbine discs. Cooling air for the IP turbine stages is taken from the compressor and transferred to the turbine stage via holes in the drive shaft. The aim of this work was to investigate the discharge coefficient characteristics of the holes in this rotating shaft, and, in particular, to ascertain whether the sense of rotation of the shaft with respect to the discs affected these significantly. This paper reports mostly on experimental measurements of the discharge coefficients. Some CFD modelling of this flow was carried out and this has helped to explain the experimental work. The experimental results show the effects on the discharge coefficient of rotational speed, flow rate, and co- and contra-rotations of the shaft relative to the discs. The measured values of the discharge coefficient are compared with established experimental data for non-rotating holes in the presence of a cross-flow. For stationary shaft and discs, co-rotation of the shaft and discs and differential rotation with the disc speed less than the shaft (in the same rotational direction), the discharge coefficients are in reasonable agreement with these data. For differential rotation (including contra-rotation) with the disc speed greater than the shaft, there is a significant decrease in discharge coefficient.  相似文献   

12.
张鑫  陆阳  程迪  范学军 《力学学报》2022,54(11):3223-3237
针对飞行马赫数0 ~ 10的宽域飞行器对吸气式动力的需求, 提出了一种以氨为燃料和冷却剂的宽域吸气式变循环发动机, 其工作模态可有3种: 涡轮模态、预冷模态和冲压模态. 首先通过对该发动机各模态热力循环过程进行建模, 计算得到发动机比推力、比冲和总效率等性能参数, 初步验证其在马赫数0 ~ 10范围内工作的可行性; 然后, 选取甲烷和正癸烷为低温低密度和煤油类碳氢燃料的典型代表, 对比各模态下氨与碳氢燃料发动机的性能差异. 结果表明, 由于氨突出的当量总热沉和当量热值, 飞行马赫数3 ~ 5的预冷模态发动机性能各指标均优于碳氢燃料. 在涡轮模态和冲压模态下, 氨燃料发动机比冲较低, 但比推力和总效率优于碳氢燃料; 最后, 对比分析各类燃料马赫数0 ~ 10宽域工作特性, 发现氨预冷可以显著提升发动机比推力, 特别在高马赫数范围, 再生冷却通道内氨可发生裂解反应大量吸热并分解为氢气和氮气, 会进一步提升发动机比推力和比冲, 且不会堵塞冷却通道, 因此可胜任飞行马赫数0 ~ 10的宽范围飞行需求. 而煤油类碳氢燃料受限于比推力低和裂解结焦问题, 最高工作马赫数难以超过8. 本文提出的氨燃料吸气式变循环发动机, 当量冷却能力强且比推力高, 适合用于二级入轨飞行器的一级动力、高马赫数宽域吸气式飞行以及未来高超声速民航等场景.   相似文献   

13.
Thin-film technology has been used to measure the heat transfer coefficient and cooling effectiveness over heavily film cooled nozzle guide vanes (NGVs). The measurements were performed in a transonic annular cascade which has a wide operating range and simulates the flow in the gas turbine jet engine. Engine-representative Mach and Reynolds numbers were employed and the upstream free-stream turbulence intensity was 13%. The aerodynamic and thermodynamic characteristics of the coolant flow (momentum flux and density ratio between the coolant and mainstream) have been modelled to represent engine conditions by using a foreign gas mixture of SF6 and Argon. Engine-level values of heat transfer coefficient and cooling effectiveness have been obtained by correcting for the different molecular (thermal) properties of the gases used in the engine-simulated experiments to those which exist in the true engine environment. This paper presents the best combined heat transfer coefficient and effectiveness data currently available for a fully cooled, three-dimensional NGVs at engine conditions.  相似文献   

14.
Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a ??ported shroud.?? This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.  相似文献   

15.
流场的特征分析是流体力学的重要研究方向,传统方法主要根据流动参数量值的大小加以判断,所得结果受选取的参数形式及主观阈值影响大.本文提出了基于流场时程深度学习的流动特征分析新方法,建立了基于自动编码的流动特征提取模型;采用无监督训练方法充分挖掘流动时程信号中的隐含特征,进行流场中复杂时序特征的低维表征与特征分析.开展了R...  相似文献   

16.
In internal combustion engines, the characteristic in-cylinder flow field is essential and significantly contributes to engine efficiency and performance. This paper describes the numerical investigation of the flow field in a motored 4-stroke, single-cylinder research engine. Quantitative and qualitative comparisons between experimental and numerical data have been performed at selected crank angle and results obtained in this work are discussed. Statistical flow properties are examined to analyze the averaged and instantaneous flow field. In order to investigate higher order statistical velocity moments and gain insight in the physical processes describing the engine flow structure, multi-cycle Large Eddy Simulation (LES) was carried out on two meshes with different spatial resolution. The three-dimensional structure of the flow has been also visualized by means of iso-surfaces of vortical structures, based on the Q criterion for individual cycles during intake. In order to assess the analysis and to verify that the computational mesh is applicable for the performance of LES simulations, the turbulence resolution M and the ratio of sgs-viscosity to the laminar viscosity were evaluated along the planes of interest. A direct comparison of the statistics of the flow field extracted from the numerical predictions shows a very good agreement with measurements conducted in the same configuration. Discrepancies have been however observed, in particular in the higher moments of the velocity components. Whilst this can be attributed mostly to the limited number of statistical sample (50 LES cycles) collected during the simulation, further investigation is certainly necessary to assess the relevance of modeling and spatial resolution issues.  相似文献   

17.
A high-order accurate CFD solver, based on the Discontinuous Galerkin (DG) finite element method, is here employed to compute the heat transfer, with and without film coolant injection, around a turbine vane extensively tested in a wind tunnel. The numerical solution makes also use of a high-order polynomial representation of the airfoil curved boundary in order to minimize the numerical sources of error, leaving possibly only those related to the physical model adopted. The objective of the work is therefore twofold: on the one hand to provide a detailed investigation, often beyond the reach of the experiments, of the complex flow field arising in a film-cooled gas turbine cascade, on the other hand to ascertain the limits of the Reynolds-averaged Navier-Stokes (RANS) approach and its associated turbulence model when using high-order accurate methods. The DG formulation is briefly reviewed, as well as the experimental apparatus and the measuring technique, and then the code is applied to the computation of various test cases characterized by different reference Reynolds and Mach numbers. Two-dimensional results (up to seventh-order accurate) obtained both with the high- and low-Reynolds version of the k-ω model employed are presented. Reasonably good agreement between experimental and numerical results is obtained, even though the outcomes are far from being completely satisfactory especially for flow regimes in the low Reynolds number range. This is due to the lack of suitable modeling of the laminar-turbulent transition process taking place around the blade leading edge. Such a complex phenomenon is out of reach of the modeling capabilities of the high-Re k-ω model, while can be roughly mimicked by the low-Re version of the model, which is able to provide a delayed onset of the turbulence quantities along the blade surface.Third-order accurate computation of the three-dimensional turbine vane are also presented in this work and compared with available measurements to investigate the relevant fluid flow phenomena occurring and to discuss significant issues related to an accurate prediction of the turbine wall heat transfer.  相似文献   

18.
An analysis of the erosion behaviour of a turbocharger radial turbine is presented. The solution domain includes both sides of the radial turbine scroll with double intake and the rotor channel. In the analysis a dilute gas-particle flow assumption is employed. The gas turbulence is defined by the k-ε model. In solving the gas phase equation, the computer code Harwell-FLOW3D is employed, which is based on a finite volume formulation using non-orthogonal body-fitted structured gridding and a pressure correction method. The particle phase is described by a Lagrangian approach, while particle paths are computed deterministically, neglecting the turbulent dispersion. For the computation of particle trajectories the code PTRACK is employed, which has been developed at ABB. Computations are carried out for several particle size classes. The results show that particles are thrown back into the scroll by the rotor at high rates. This seems to be the main source of erosion effects in the scroll. It has been observed that particles are unequally distributed between the scroll sides on their re-entry, resulting in greater erosion on one of the scroll sides. The maximum erosion along the scroll is found to be likely to occur near the scroll end.  相似文献   

19.
金凡尧  宋朝晖  汪兴明  肖扬  王易 《应用力学学报》2020,(2):695-700,I0016,I0017
涡轮结构广泛应用于钻井工具,在对其进行仿真分析研究过程中通常采用清水作为介质,但该方法并不能比较确切地反映涡轮结构在井下实际的工作特征。针对该问题,本文建立了某型涡轮三维模型,采用Turbo Grid软件确定合理的网格参数,并进行了网格划分。采用Herschel-Bulkley钻井液流变模型研究了钻井液流体参数对涡轮结构的输出扭矩和效率的影响。基于响应面法,采用Box-Behnken设计方法得到了钻井液流体参数与涡轮性能指标的关系。结果表明,相较于稠度指数和流变指数而言,钻井液的密度和动切力对涡轮结构的输出扭矩和效率影响显著。因此,在探讨钻井液流变参数对涡轮性能影响时,应该优先考虑钻井液的密度和动切力特性。  相似文献   

20.
In this paper we investigate local adaptive refinement of unstructured hexahedral meshes for computations of the flow around the DU91 wind turbine airfoil. This is a 25% thick airfoil, found at the mid‐span section of a wind turbine blade. Wind turbine applications typically involve unsteady flows due to changes in the angle of attack and to unsteady flow separation at high angles of attack. In order to obtain reasonably accurate results for all these conditions one should use a mesh which is refined in many regions, which is not computationally efficient. Our solution is to apply an automated mesh adaptation technique. In this paper we test an adaptive refinement strategy developed for unstructured hexahedral meshes for steady flow conditions. The automated mesh adaptation is based on local flow sensors for pressure, velocity, density or a combination of these flow variables. This way the mesh is refined only in those regions necessary for high accuracy, retaining computational efficiency. A validation study is performed for two cases: attached flow at an angle of 6° and separated flow at 12°. The results obtained using our adaptive mesh strategy are compared with experimental data and with results obtained with an equally sized non‐adapted mesh. From these computations it can be concluded that for a given computing time, adapted meshes result in solutions closer to the experimental data compared to non‐adapted meshes for attached flow. Finally, we show results for unsteady computations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号