共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of high-fidelity Discrete Element Method (DEM) coupled with Computational Fluid Dynamics (CFD) for particle-scale simulations demands extensive simulation times and restricts application to small particulate systems. DEM-CFD simulations require good performance and satisfactory scalability on high-performance computing platforms. A reliable parallel computing strategy must be developed to calculate the collision forces, since collisions can occur between particles that are not on the same processor, or even across processors whose domains are disjoint. The present paper describes a parallelization technique and a numerical verification study based on a number of tests that allow for the assessment of the numerical performance of DEM used in conjunction with Large-Eddy Simulation (LES) to model dense flows in fluidized beds. The fluid phase is computed through solving the volume-averaged four-way coupling Navier-Stokes equations, in which the Smagorinsky sub-grid scale tensor model is used. Furthermore, the performance of Sub-Grid Scale (SGS) turbulence models applied to Fluidized Bed Reactor (FBR) configurations has been assessed and compared. The developed numerical solver represents an interesting combination of techniques that work well for the present purpose of studying particle formation in fluidized beds. 相似文献
2.
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system. 相似文献
4.
Fluidized bed granulation is a process by which granules or coated particles are produced in a single piece of equipment by spraying a binder as solution, suspension, or melt on the fluidized powder bed. Heat and mass transfer correlation useful for designing a granulator has been derived based on the equivalence of evaporation rate of the liquid to the heat transferred from hot gas to particles: (m/A)Dp2λ/(Lmf(1- εmf)(Tg-Tl)Kg)=hDp/Kg . This equation is applied to data on granulation experiments by different workers to calculate Reynolds number and Nusselt number to obtain a relation between heat and mass transfer from gas to particles during granulation on a logarithmic scale from which the following empirical relation is obtained: Nu = 0.0205Re1.3876 which is comparable to Kothari's correlation Nu = 0.03Re1.3. By using the heat and mass transfer correlation obtained, the entry length, that is the length of granulator up to which effective heat transfer from gas to bed particles takes place, is estimated, which is also validated with experimental study. The correct estimation of entry length is useful in optimal design of a granulator. 相似文献
5.
An experimental study was made of the thermal and hydraulic characteristics of a three-phase fluidized bed cooling tower. The experiments were carried out in a packed tower of 200 mm diameter and 2.5 m height. The packing used was spongy rubber balls 12.7 mm in diameter and with a density of 375 kg/m 3. The tower characteristic was evaluated. The air-side pressure drop and the minimum fluidization velocity were measured as a function of water/air mass flux ratio (0.4–2), static bed height (300–500 mm), and hot water inlet temperature (301–334 K). The experimental results indicate that the tower characteristics KaV/L increases with increases in the bed static height and hot water inlet temperature and with decreases in the water/air mass flux ratio. It is also shown that the air-side pressure drop increases very slowly with increases in air velocity. The minimum, fluidization velocity was found to be independent of the static bed height. The data obtained were used to develop a correlation between the tower characteristics, hot water inlet temperature, static bed height, and the water/air mass flux ratio. The mass transfer coefficient of the three-phase fluidized bed cooling tower is much higher than that of packed-bed cooling towers with higher packing height. 相似文献
6.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard deviation and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi-industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uc. The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the fluidized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz. 相似文献
7.
The problem of interaction of small hydrodynamic perturbations with a nonequilibrium region in a Gas flow with different models
of energy pumping is solved. One-dimensional and two-dimensional interactions are considered. A range of system parameters
is found in which interaction occurs in a resonant manner (significant amplification of perturbations is observed). It is
demonstrated that interaction of vortex perturbations with the nonequilibrium region generates heat waves.
__________
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 58–64, November–December, 2005. 相似文献
8.
A large diameter (∼70 mm) dry coal sample was used to study the competitive displacement of CH 4 by injection of supercritical CO 2, and CO 2–CH 4 counter-diffusion in coal matrix. During the test, a staged loading procedure, which allows the calibration of the key reservoir
modelling parameters in a sequential and progressive manner, was employed. The core-flooding test was history matched using
an Enhanced Coalbed Methane (ECBM) simulator, in which Fick’s Law for mixed gas diffusion and the extended Langmuir equations
are implemented. The system pressure rise during the two loading stages and the CO 2 breakthrough time in the final production stage were matched by using the pair of constant sorption times (9 and 3.2 days)
for CH 4 and CO 2, respectively. The corresponding diffusion coefficients for CH 4 and CO 2 were estimated to be 1.6 × 10 −12 and 4.6 × 10 −12 m 2/s, respectively. Comparison was made with published gas diffusion coefficients for dry ground samples (ranging from < 0.063
to ∼3 mm) of the same coal at relatively low pressures (< 4 MPa). The CO 2/CH 4 gas diffusion coefficient ratio was well within the reported range (2–3), whereas the CH 4 diffusion coefficient obtained from history matching of the core-flooding test is approximately 15 times smaller than that
arrived by curve-fitting the measured sorption uptake rate using a unipore diffusion model. The calibrated model prediction
of the effluent gas composition was in good agreement with the test data for CO 2 mole fraction of up to 20%. 相似文献
9.
This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally.Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695--0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase. 相似文献
10.
Foaming of polymers with CO2 has attracted increasing attention in polymer processing studies. Some of the fundamental properties of polymer/CO2 systems is discussed in this short review, including solubility and diffusivity of CO2 in the polymer, polymer crystallization, interfacial tension between the polymer and the gas, and rheology of the CO2/polymers melt. These properties understandably affect the foaming process, and the structures of the foam products. Meanwhile, these properties can be changed via manipulation of CO2 in polymer. The proposed idea is to manipulate the foaming process and the foam structure by CO2-induced changes in these properties. Two cases from the authors' laboratory are presented for elucidating how to use the changes to manipulate the foaming process. 相似文献
11.
This study presents a three-dimensional numerical study of the mixing and segregation of binary particle mixtures in a two-jet spout fluidized bed based on an Eulerian–Eulerian three-fluid model. Initially, the particle mixtures were premixed and packed in a rectangular fluidized bed. As the calculation began, the gas stream was injected into the bed from the distributor and jet nozzles. The model was validated by comparing the simulated jet penetration depths with corresponding experimental data. The main features of the complex gas–solid flow behaviors and the mechanism of mixing and segregation of the binary mixtures were analyzed. Moreover, further simulations were carried out to evaluate the effects of operating conditions on the mixing and segregation of binary particle mixtures. The results illustrate that mixing can be enhanced by increasing the jet velocity or enlarging the difference of initial proportions of binary particle mixtures. 相似文献
12.
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of −30 to 30 kPa for each equivalence ratio ( Φ = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINO x simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated. 相似文献
13.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C 3H 8, NH 3, and CO 2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m −2 s −1, heat fluxes from 5 to 70 kW m −2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO 2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations. 相似文献
14.
This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally. Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695-0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase. 相似文献
15.
An experimental investigation of turbulent heat transfer in vertical upward and downward supercritical CO 2 flow was conducted in a circular tube with an inner diameter of 4.5 mm. The experiments were performed for bulk fluid temperatures from 29 to 115 °C, pressures from 74.6 to 102.6 bar, local wall heat fluxes from 38 to 234 kW/m 2, and mass fluxes from 208 to 874 kg/m 2 s. At a moderate wall heat flux and low mass flux, the wall temperature had a noticeable peak value for vertical upward flow, but increased monotonically along the flow direction without a peak value for downward flow. The ratios of the experimental Nusselt number to the value obtained from a reference correlation were compared with Bo* and q+ distributions to observe the buoyancy and flow-acceleration effects on heat transfer. In the experimental range of this study, the flow acceleration predominantly affected the heat-transfer phenomena. Based on an analysis of the shear-stress distribution in the turbulent boundary layer and the significant variation of the specific heat across the turbulent boundary layer, a new heat-transfer correlation for vertical upward and downward flow of supercritical pressurized fluid was developed; this correlation agreed with various experimental datasets within ±30%. 相似文献
16.
An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken
in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined
within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density,
and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock
wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown
that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients
of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing
goes more homogeneous when the Atwood number tends to zero. 相似文献
17.
利用一步水热法制备了氧并入二硫化钼(O-MoS_2)纳米花,该纳米花由大量O-MoS_2纳米片组装而成.由于氧元素的并入,使得MoS_2中(002)晶面间距从6.15?增大至10.5?.利用SRV-I微振动摩擦磨损试验机考察了O-MoS_2纳米花作为添加剂在PAO-8基础油中的摩擦学性能,结果表明:O-MoS_2纳米花的加入可显著改善PAO-8油的减摩抗磨性能,这主要是由于膨胀的层间距有利于MoS_2沿(002)晶面发生滑移.其中,当O-MoS_2纳米花的添加含量为0.1 mg/m L时,润滑油的抗磨损性能最佳. 相似文献
18.
Carbon dioxide injected into saline aquifers dissolves in the resident brines increasing their density, which might lead to
convective mixing. Understanding the factors that drive convection in aquifers is important for assessing geological CO 2 storage sites. A hydrodynamic stability analysis is performed for non-linear, transient concentration fields in a saturated,
homogenous, porous medium under various boundary conditions. The onset of convection is predicted using linear stability analysis
based on the amplification of the initial perturbations. The difficulty with such stability analysis is the choice of the
initial conditions used to define the imposed perturbations. We use different noises to find the fastest growing noise as
initial conditions for the stability analysis. The stability equations are solved using a Galerkin technique. The resulting
coupled ordinary differential equations are integrated numerically using a fourth-order Runge–Kutta method. The upper and
lower bounds of convection instabilities are obtained. We find that at high Rayleigh numbers, based on the fastest growing
noise for all boundary conditions, both the instability time and the initial wavelength of the convective instabilities are
independent of the porous layer thickness. The current analysis provides approximations that help in screening suitable candidates
for homogenous geological CO 2 sequestration sites. 相似文献
19.
The mean-field free-energy LBM is used to investigate the liquid--vapor flow regimes in a two-dimensional 200 nm channel with near-critical CO 2 at temperature 25 oC and pressure 6.434 MPa as the working fluid. Flow regimes over vapor qualities ranging from 0.01 x0.90, Weber numbers O(10 −2) WeO(10 3), and capillary numbers O(10 −2) CaO(10) are investigated. Three major types of flow regimes are encountered -- dispersed flow, bubble/plug flow, and liquid strip flow, each of which encompasses variations of the basic flow regime. The three major flow regimes with all their variations can be further classified into two major categories – regular and irregular. Irregular flow regimes are characterized by a distorted interface, including distorted bubble/slug flow, intermittent strip flow, wavy strip flow, and wispy-strip flow. Flows in which the interface is ordered and symmetric such as bubble/plug and strip flows are classified as regular flow regimes. It is found that the transition from regular to irregular flow regimes occurs at Weber number between 500 and 1000, independent of the vapor quality. Although no experiments exist at the same conditions, comparison of the predicted transition between regular and irregular regimes shows the same qualitative trends as experiments found in the literature. 相似文献
20.
Oxy-fuel combustion is a promising alternative for power generation with CO 2 capture, where the fuel is burned in an atmosphere enriched with oxygen and CO 2 is used as a diluent. This type of combustion is characterised by uncommon characteristics in terms of thermal heat transfer budget as compared to air supported systems. The study presents experimental results of radiative heat flux along the flame axis and radiant fractions of non-premixed jet methane flames developing in oxy-fuel environments with oxygen concentrations ranging from 35% to 70%, as well as in air. The flames investigated have inlet Reynolds numbers from 468 to 2340. The data collected have highlighted the effects of the flame structure and thermo-chemical properties of oxy-fuel combustion on the heat flux radiated by the flames. It was first observed that peak heat flux increases considerably with oxygen concentration. More generally the radiant fraction increases with both increasing Reynolds number in the laminar regime and oxygen concentration. It was found that despite a difference in flame temperature, the radiative characteristics of the flames (heat flux distributions and radiant fraction) in air were similar to those with 35% O 2 in CO 2. The radiative properties of flames in oxy-fuel atmosphere with CO 2 as diluents appear to be dominated by the flame temperature. 相似文献
|