首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the “suction back” phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a domain regarding excitation intensity and Strouhal number to facilitate identification of characteristic flow modes.  相似文献   

2.
Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450–23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have been used in the literature.  相似文献   

3.
Two methods of mechanically exciting a plane turbulent free jet are described; periodic perturbatin of the nozzle exit velocity, and forced oscillation of a small vane located in the het potential core. Hot-wire measurements obtained by conditional sampling techniques indicated that the flow fields of the two jets are substantially different although they have the same Strouhal number of 0.0032. While the mean flow development of the pulsed jet can be described adequately by a quasi-steady model, the vane-excited jet exhibits unsteady effects which depart significantly from quasi-steady approximations such as increased entrainment, amplification of excitation and non-linear effects in the form of the presence of high harmonics. The constancy of momentum flux has been examined in both the steady and unsteady jets  相似文献   

4.
We examined the flow behaviors and mixing characteristics of double-concentric jets using laser-assisted smoke flow visualization method to analyze typical flow patterns and binary boundary detection technique to investigate jet spread width. Time-averaged velocity vectors, streamline patterns, velocity distributions, turbulence properties, and vorticity contours were analyzed using Particle Image Velocimetry (PIV). Topological flow patterns were analyzed to interpret the vortical flow structures. Mixing properties were investigated using a tracer-gas concentration detection method. Four characteristic modes were observed: annular flow dominated mode, transition mode, central jet dominated mode-low shear, and central jet dominated mode-high shear. The jets’ mixing properties were enhanced by two major phenomena: the merging of annular flow and central jet at the centerline and the large turbulence fluctuations produced in the flow field. The merging of the jets induced stagnation points on the central axis in the annular flow dominated mode, which caused reverse flow on the central axis and drastic turbulence fluctuations of the near field region. When the central jet penetrated the recirculation region in the other three modes, the stagnation points on the central axis and the reverse flow vanished. Therefore, the mixing behaviors were prominently enhanced in the annular flow dominated mode.  相似文献   

5.
 Laser light sheet visualisation, coupled with image processing, was utilised to understand the effect of exit geometry on the integral properties of jets in cross flow. The study involved jets emanating from circular and rectangular nozzles of different aspect ratios deflected by a uniform free-stream. The investigation considers incompressible momentum jets with exit Reynolds number in the range of 4400–9200, the velocity ratios being 3.9, 5.9 and 7.8. In contrast to a deflected circular jet, those jets emanating from blunt configurations tend to have higher growth rates initially and are devoid of the horse-shoe or the bound vortex system in their cross section. Received: 30 May 1996 / Accepted: 27 November 1996  相似文献   

6.
The present paper reports measurements of axial and radial velocities obtained with laser-Doppler anemometry in the transitional region of a round jet. The predominant frequencies of the coherent structures detected in the non-artificially excited jet, correspond to Strouhal numbers, around 0.33 and 0.55 and an interpretation of these observations is made. The use of external excitation can modify some characteristics of the jets disturbing the balance between the different flow structures, namely those corresponding to the two values of St. The jet diameter was 30.0 mm and the velocities ranged from near zero up to 15 m/s, corresponding to Reynolds number of 2.87 × 104.To obtain the velocity probability distributions, power spectral distributions and auto-correlations, together with mean and rms velocities a LDA with double Bragg cell system was used. The Doppler signal was analysed with a counter interfaced to an Apple II microcomputer and a Racal magnetic tape.  相似文献   

7.
The flow and mixing characteristics of a forward-inclined stack-issued jet at various inclination angles (θ) and jet-to-crossflow momentum flux ratios (R) were experimentally studied in an open-loop wind tunnel. Flow behaviors were examined using the laser-assisted smoke flow visualization technique. The instantaneous velocities of the upwind-side shear-layer were digitized by a hot-wire anemometer using a high-speed data acquisition system. The instability frequencies in the upwind-side shear-layer vortices were obtained by the fast Fourier transform method. Long-exposure flow images were processed using the binary edge-detection technique to obtain the jet spread width. Transverse dispersion of jet fluids was determined using tracer gas concentration detection. The upwind-side shear-layer vortices revealed four characteristic flow modes: the High impingement-crossflow dominated mode (about θ < 15° and low R), the High impingement-jet flow dominated mode (about θ < 25° and high R), the Low impingement-crossflow dominated mode (about θ > 15° and low R), and the Low impingement-jet flow dominated mode (about θ > 25° and high R). Increasing θ in the crossflow dominated regimes eliminated the upwind-side shear-layer vortices, while increasing θ in the jet flow dominated regimes emphasized the upwind-side shear-layer vortices. Increasing θ at a fixed value of R increased jet spread width in the far field in all modes. In the near field, at x/d < 5 in the High impingement-crossflow dominated regime, the jet spread width was greater than in the Low impingement-crossflow dominated regime. In the jet flow dominated regimes, higher θ values led to greater jet spread width. Transverse dispersion of the jet fluids approached the jet spread width results. In the Low impingement-jet flow dominated regime, transverse dispersion of the jet fluids was significantly increased compared to the other regimes. In addition, the maximum tracer gas concentration was severely reduced at all axial stages, which implied better dispersion of the jet fluids in this regime.  相似文献   

8.
Flow characteristics of confined, laminar milliscale slot jets are investigated from visualizations, as they impinge upon a flat target plate, with a fully developed velocity profile at the nozzle exit. The effects of Reynolds number Re and normalized nozzle-to-plate distance H/B are considered for a nozzle width B of 1.0 mm. Transition from a stable symmetric jet to an unsteady oscillating jet is observed as the Reynolds number increases (with H/B constant), where the Reynolds number associated with this transition decreases as the normalized nozzle-to-plate distance H/B increases. Instantaneous visualizations show unsteady lateral distortions of jet columns at experimental conditions corresponding to the presence of continuous sinusoidal oscillations, intermittent oscillating motion of the jet column, and jet flow fluctuation/flapping motion. Also apparent in flow visualization sequences are smoke signatures associated with instantaneous vortex structures, which form as secondary flows develop in fluid which, initially, is just adjacent to and within the jet column. Associated jet and vortex structural changes are described as different modes of unsteadiness are present, including characterization of jet column unsteadiness using jet column oscillation frequency, and lateral and streamwise extents of jet distortion.  相似文献   

9.
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum–flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum–flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector’s aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d j  ~ 40, independent of the momentum–flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a Fast Fourier algorithm and characteristic Strouhal numbers of St = 0.18 for the liquid jet breakup and of St = 0.011 for the separation shock fluctuation are obtained.  相似文献   

10.
The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin–Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes.Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.  相似文献   

11.
The paper presents numerical investigations of square jets in a wide range of Reynolds numbers with varying inlet turbulence characteristics. The research focuses on flow characteristics depending on inflow turbulent length/time scales and excitation frequencies in case of excited jets. It is found that the parameters of inlet turbulence affect the solutions qualitatively when the Reynolds number is sufficiently low. In these cases the impact of varying the turbulent time scale is considerably larger than changing the turbulent length scale. It was also observed that at sufficiently high Reynolds numbers the jets become quite independent of the inlet turbulence characteristics. This confirms findings of Xu et al. (Phys. Fluids, 2013) concerning weak/strong dependence of the jet evolution on inflow conditions. In case of excited jets the excitation frequencies play an important role and influence the jet behaviour most strongly at lower values of the Reynolds number. For some forcing frequencies a bifurcation occurs at sufficiently large forcing amplitudes. This phenomenon turned out to be independent of the assumed length and time scales of the turbulent fluctuations, both in terms of robustness as well as amplitude.  相似文献   

12.
Use is made of acoustic excitation to enhance the coherent vortical structures that form in both a plane jet and a passively modified plane jet. The Strouhal number for the preferred mode based on the nozzle height of the jet is found to be unaffected by the passive modification. The existence of the jet column mode of stable pairing in the excited plane jet is unambiguously confirmed. Measurements in the excited and modified plane jet show that the passive modification suppresses this mode. Finally, the work shows the existence of a new mode of stable pairing. Both time- and phase-averaged measurements are presented to examine this mode.  相似文献   

13.
In the generation of discrete tones by subsonic impinging jets, there exists a difference of opinion as how the feedback is achieved, i.e., the path of the feedback acoustic waves is whether inside the jet or outside the jet? The only available model (Tam and Ahuja model) for the prediction of an average subsonic jet impingement tone frequency assumes that the upstream part of the feedback loop is closed by an upstream propagating neutral wave of the jet. But, there is no information about the plate geometry in the model. The present study aims at understanding the effect of the plate geometry (size and co-axial hole in the plate) on the self-excitation process of subsonic impinging jets and the path of the acoustic feedback to the nozzle exit. The present results show that there is no effect of plate diameter on the frequency of the self-excitation. A new type of tones is generated for plates with co-axial hole (hole diameter is equal to nozzle exit diameter) for Mach numbers 0.9 and 0.95, in addition to the axisymmetric and helical mode tones observed for plates without co-axial hole. The stability results show that the Strouhal number of the least dispersive upstream propagating neutral waves match with the average Strouhal number of the new tones observed in the present experiments. The present study extends the validity of the model of Tam and Ahuja to a plate with co-axial hole (annular plate) and by doing so, we indirectly confirmed that the major acoustic feedback path to the nozzle exit is inside the jet.  相似文献   

14.
Measurements were made in the near field of piston driven axisymmetric coaxial synthetic jets emanating from an orifice and a surrounding annulus of equal exit areas and cavity volumes. Piston velocity, amplitude, radial spacing between the orifice and the annulus, and exit angles had a strong influence on the dominant features of the flow. Flow visualization revealed three distinct topologies of the jet consisting of expanding, contracting and recirculating regions and doubling of the number of foci inside of the cavity compared to jet from the orifice alone. The direction of the swirl/rotation imposed on the mean flow was also dependent on the direction of the rotation of dominant foci. Interaction between flow from the orifice and the annulus amplified the azimuthal instability of ring vortices due to the periodic axial stretching and compression of the streamwise vortex filaments. Bifurcation of ring vortices into elliptical lobes reported earlier [S.V. Gaimella, V.P. Schroeder, Local heat transfer distributions in confined multiple air impingement, ASME Journal of Electronic Packaging 123 (3) (2001) 165–172] for single cavity jet was also observed in the coaxial jet. The number of cellular structures however was considerably larger than the single jet case. Large excursions of the jets from the plane of symmetry were observed. Power spectra exhibited sub-harmonic distribution of energy due to coalescence of the vortices. Growth of jet width and decay of centerline velocity were strongly influenced by the spacing and forcing frequency.  相似文献   

15.
The behavior of compressible jets originated from initially turbulent pipe flows issuing in still air has been investigated at three different subsonic Mach numbers, 0.3, 0.6 and 0.9. Helium, nitrogen and krypton gases were used to generate the jet flows and investigate the additional effects of density on the flow structure. Particle image velocimetry, high-frequency response pressure transducers and thermocouples were used to obtain velocity, Mach number and total temperature measurements inside the flow field. The jets were formed at the exit of an adiabatic compressible frictional turbulent pipe flow, which was developing toward its corresponding sonic conditions inside the pipe, and continued to expand within the first four diameters distance after it exited the pipe. Theoretical considerations based on flow self-similarity were used to obtain the decay of Mach number along the centerline of the jets for the first time. It was found that this decay depends on two contributions, one from the velocity field which is inversely proportional to the distance from the exit and one from the thermal field which is proportional to this distance. As a result, a small non-linearity in the variation of the inverse Mach number with downstream distance was found. The decay of the Mach number at the centerline of the axisymmetric jets increases by increasing the initial Mach number at the exit of the flow for all jets. The decay of mean velocity at the centerline of the jets is also higher at higher exit Mach numbers. However, the velocity non-dimensionalized by the exit velocity seems to decrease faster at low exit Mach numbers, suggesting a reduced mixing with increasing exit flow Mach numbers. Helium jets were found to have the largest spreading rate among the three different gas jets used in the present investigation, while krypton jets had the lowest spreading rate. The spreading rate of each gas decreases with increasing its kinetic energy relatively to its internal energy.  相似文献   

16.
 The transient character of the jet issuing from an upward nozzle centered at the bottom of a vertical cylindrical tank into bulk liquid of a different density was measured using flow visualization and PIV for varying densimetric Froude numbers by varying the jet Reynolds numbers and the ratios of fluid densities. Positively buoyant jets penetrate to the free surface, driven by both momentum and buoyancy in the upward direction. The lighter jet fluid stratifies in a layer above the bulk liquid. Upon starting, a negatively buoyant jet has three stages. First the jet penetrates to its maximum height in the tank. Then the jet penetration decreases due to the downward backflow of heavier fluid surrounding the jet, which reduces the jet’s upward momentum. Finally the jet penetration height fluctuates around a mean value about 70% the maximum height of penetration. For small negative Froude numbers, the flow is fountain-like. The downward flow turns radially outward as it reaches the bottom of the tank and eventually an annular recirculation zone forms at the bottom of the tank with vortical motion opposite the vorticity of the jet. For large negative Froude numbers, the spreading of the jet extends far enough so the annular downward flow is along the walls of the tank resulting in a large annular recirculation zone. The penetration depth, h, and time, t, scale with buoyancy flux, F, and the jet momentum flux, M, as hM -3/4F1/2 and tF∣/M to collapse the transient jet penetration height data onto a single curve over a wide range of Froude numbers for either positively or negatively buoyant jets. Received: 8 June 1998/Accepted: 3 February 1999  相似文献   

17.
The paper concentrates on increasing convective heat transfer due to periodically pulsating impinging air jets. A maximum enhancement rate of cooling effectiveness up to 20% could be detected at an excitation Strouhal number of Sr = 0.82 when using a high pulsation magnitude. Reductions up to 5% occured at low Strouhal numbers with coincident high pulsation magnitudes as well. The thermal results were completed with phase-locked flow field investigations by means of PIV and surface visualizations using the oil film method.  相似文献   

18.
A density-based solver with the classical fourth-order accurate Runge-Kutta temporal discretization scheme was developed and applied to study under-expanded jets issued through millimetre-size nozzles for applications in high-pressure direct-injection (DI) gaseous-fuelled propulsion systems. Both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) turbulence modelling techniques were used to evaluate the performance of the new code. The computational results were compared both quantitatively and qualitatively against available data from the literature. After initial evaluation of the code, the computational framework was used in conjunction with RANS modelling (k-ω SST) to investigate the effect of nozzle exit geometry on the characteristics of gaseous jets issued from millimetre-size nozzles. Cylindrical nozzles with various length to diameter ratios, namely 5, 10 and 20, in addition to a diverging conical nozzle, were studied. This study is believed to be the first to provide a direct comparison between RANS and LES within the context of nozzle exit profiling for advanced high-pressure injection systems with the formation of under-expanded jets. It was found that reducing the length of the straight section of the nozzle by 50% resulted in a slightly higher level of under-expansion (∼2.6% higher pressure at the nozzle exit) and ∼1% higher mass flow rate. It was also found that a nozzle with 50% shorter length resulted in ∼6% longer jet penetration length. At a constant nozzle pressure ratio (NPR), a lower nozzle length to diameter ratio resulted in a noticeably higher jet penetration. It was found that with a diverging conical nozzle, a fairly higher penetration length could be achieved if an under-expanded jet formed downstream of the nozzle exit compared to a jet issued from a straight nozzle with the same NPR. This was attributed to the radial restriction of the flow and consequently formation of a relatively smaller reflected shock angle. With the conical nozzle used in this study and a 30 bar injection pressure, an under-expanded hydrogen jet exhibited ∼60% higher penetration length compared to an under-expanded nitrogen jet at 100 μs after start of injection. Moreover, the former jet exhibited ∼22% higher penetration compared to a nitrogen jet issued through the conical profile with 150 bar injection pressure.  相似文献   

19.
Particle image velocimetry is used to examine the flow behind a two-dimensional heaving hydrofoil of NACA 0012 cross section, operating with heave amplitude to chord ratio of 0.215 at Strouhal numbers between 0.174 and 0.781 and a Reynolds number of 2,700. The measurements show that for Strouhal numbers larger than 0.434, the wake becomes deflected such that the average velocity profile is asymmetric about the mean heave position of the hydrofoil. The deflection angle of the wake, which is related to the average lift and drag on the hydrofoil, is found to lie between 13° and 18°. An examination of the swirl strength of the vortices generated by the hydrofoil motion reveal that the strongest vortices, which are created at the higher Strouhal numbers, dissipate most rapidly. This research article was submitted for the special issue on Animal locomotion: The hydrodynamics of swimming (Vol. 43, No. 5).  相似文献   

20.
An axisymmetric air jet exhausting from a 22-degree-angle diffuser is investigated experimentally by particle image velocimetry (PIV) and stereo-PIV measurements. Two opposite dielectric barrier discharge (DBD) actuators are placed along the lips of the diffuser in order to force the mixing by a co-flow actuation. The electrohydrodynamic forces generated by both actuators modify and excite the turbulent shear layer at the diffuser jet exit. Primary air jet velocities from 10 to 40 m/s are studied (Reynolds numbers ranging from 3.2 to 12.8 × 104), and baseline and forced flows are compared by analysing streamwise and cross-stream PIV fields. The mixing enhancement in the near field region is characterized by the potential core length, the centreline turbulent kinetic energy (TKE), the integrated value of the TKE over various slices along the jet, the turbulent Reynolds stresses and the vorticity fields. The time-averaged fields demonstrate that an effective increase in mixing is achieved by a forced flow reattachment along the wall of the diffuser at 10 m/s, whereas mixing enhancement is realized by excitation of the coherent structures for a primary velocity of 20 and 30 m/s. The actuation introduces two pairs of contra-rotating vortices above each actuator. These structures entrain the higher speed core fluid toward the ambient air. Unsteady actuations over Strouhal numbers ranging from 0.08 to 1 are also studied. The results suggest that the excitation at a Strouhal number around 0.3 is more effective to enhance the turbulence kinetic energy in the near-field region for primary jet velocity up to 30 m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号