首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reorientation dynamics of water confined within nanoscale, hydrophilic silica pores are investigated using molecular dynamics simulations. The effect of surface hydrogen-bonding and electrostatic interactions are examined by comparing with both a silica pore with no charges (representing hydrophobic confinement) and bulk water. The OH reorientation in water is found to slow significantly in hydrophilic confinement compared to bulk water, and is well-described by a power-law decay extending beyond one nanosecond. In contrast, the dynamics of water in the hydrophobic pore are more modestly affected. A two-state model, commonly used to interpret confined liquid properties, is tested by analysis of the position-dependence of the water dynamics. While the two-state model provides a good fit of the orientational decay, our molecular-level analysis evidences that it relies on an over-simplified picture of water dynamics. In contrast with the two-state model assumptions, the interface dynamics is markedly heterogeneous, especially in the hydrophilic pore and there is no single interfacial state with a common dynamics.  相似文献   

2.
The behaviour of water confined in an imogolite nanotube was studied by means of molecular dynamics simulations. The results of the study show an important difference between the interaction of water molecules with the internal and external surfaces of the nanotube. The analysis of the density profiles of confined molecules, of their spatial organisation, of the size of molecular clusters, of the lifetime of H-bonds in the system and of dynamical characteristics of molecules permits us to qualify the external imogolite surface as hydrophobic, whereas the internal surface reveals a hydrophilic character.  相似文献   

3.
Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C(36)H(74) or n-alcohol C(35)H(71)OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding experimental data from x-ray reflectivity measurements, reveal a uniform weak de-wetting characteristic for the extended hydrophobic surface, while the hydrophilic surface is weakly wetted. These microscopic data are consistent with macroscopic contact angle measurements. Specific water orientation is present at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together with a partial drying of the surfaces are more indicative of the hydrophobic effect than structural ordering, which we suggest to be independent of surface topology.  相似文献   

4.
A water molecule in the vicinity of a hydrophobic surface forms fewer hydrogen bonds than a bulk molecule because the surface restricts the space available for other water molecules necessary for its hydrogen-bonding. In this vicinity, the number of hydrogen bonds per water molecule depends on its distance to the surface. Considering the number of hydrogen bonds per bulk water molecule (available experimentally) as the only reference quantity, we propose an improved probabilistic approach to water hydrogen-bonding that allows one to obtain an analytic expression for this dependence. (The original version of this approach [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 130, 124713 (2009)] provides the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface as an average over all possible locations and orientations of the molecule.) This function (the number of hydrogen bonds per water molecule versus its distance to a hydrophobic surface) can be used to develop analytic models for the effect of hydrogen-bonding on the hydration of hydrophobic particles and their solvent-mediated interaction. Presenting a model for the latter, we also examine the temperature effect on the solvent-mediated interaction of two parallel hydrophobic plates.  相似文献   

5.
We perform molecular dynamics simulations of water in the presence of hydrophobic/hydrophilic walls at T = 300 K and P = 0 GPa. For the hydrophilic walls, we use a hydroxylated silica model introduced in previous simulations [Lee, S. H.; Rossky, P. J. J. Chem. Phys. 1994, 100, 3334. Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G.; Phys. Rev. E 2006, 73, 041604.]. By rescaling the physical partial atomic charges by a parameter 0 相似文献   

6.
The grand canonical simulation algorithm is considered as a general methodology to sample the configuration of water molecules confined within protein environments. First, the probability distribution of the number of water molecules and their configuration in a region of interest for biochemical simulations, such as the active site of a protein, is derived by considering a finite subvolume in open equilibrium with a large system serving as a bulk reservoir. It is shown that the influence of the bulk reservoir can be represented as a many-body potential of mean force acting on the atoms located inside the subvolume. The grand canonical Monte Carlo (GCMC) algorithm, augmented by a number of technical advances to increase the acceptance of insertion attempts, is implemented, and tested for simple systems. In particular, the method is illustrated in the case of a pure water box with periodic boundary conditions. In addition, finite spherical systems of pure water and containing a dialanine peptide, are simulated with GCMC while the influence of the surrounding infinite bulk is incorporated using the generalized solvent boundary potential [W. Im, S. Berneche, and B. Roux, J. Chem. Phys. 114, 2924 (2001)]. As a last illustration of water confined in the interior of a protein, the hydration of the central cavity of the KcsA potassium channel is simulated.  相似文献   

7.
Molecular dynamics simulations are performed to study the dynamics of interfacial water confined in the interdomain region of a two-domain protein, BphC enzyme. The results show that near the protein surface the water diffusion constant is much smaller and the water-water hydrogen bond lifetime is much longer than that in bulk. The diffusion constant and hydrogen bond lifetime can vary by a factor of as much as 2 in going from the region near the hydrophobic domain surface to the bulk. Water molecules in the first solvation shell persist for a much longer time near local concave sites than near convex sites. Also, the water layer survival correlation time shows that on average water molecules near the extended hydrophilic surfaces have longer residence times than those near hydrophobic surfaces. These results indicate that local surface curvature and hydrophobicity have a significant influence on water dynamics.  相似文献   

8.
We report on an observation of the phase transition between two liquid phases of supercooled confined water in simulations. The temperature of the liquid-liquid transition of water at zero pressure slightly decreases due to confinement in the hydrophobic pore. The hydrophilic confinement affects this temperature in the opposite direction and shifts the critical point of the liquid-liquid transition to a higher pressure. As a result, in a strongly hydrophilic pore the liquid-liquid phase transition becomes continuous at zero pressure, indicating the shift of its critical point from negative to a positive pressure. These findings indicate that experimental studies of water confined in the pores of various hydrophobicity/hydrophilicity may clarify the location of the liquid-liquid critical point of bulk water.  相似文献   

9.
In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.  相似文献   

10.
The rotational molecular dynamics of water confined to nanoporous molecular sieves of a regular hexagonal (SBA-15) and of a foamlike pore structure was studied by dielectric spectroscopy in the frequency range from 10(-2) to 10(9) Hz and in a broad temperature interval. Two relaxation processes were observed: the process at lower frequencies is related to water molecules forming a layer, which is strongly adsorbed at the pore surface, whereas the relaxation process at higher frequencies is assigned to fluctuations of water molecules situated close to the center of the pore. The relaxation times of the low-frequency process for both materials and of the high-frequency process for the SBA-15 material have an unusual saddlelike temperature dependence, reported here for the first time. To describe this temperature dependence, a model developed for water confined to nanoporous glasses by Ryabov et al. [J. Phys. Chem. B 2001, 105, 1845] was applied, which considers two competing effects. The characteristic features of these two competing processes were compared with those reported for other porous systems.  相似文献   

11.
A coarse‐grained (CG) model for the simulation of nanoconfined water between graphene surfaces is developed. For this purpose, mixed‐grained simulations are done, in which the two‐site water model of Riniker and van Gunsteren [S. Riniker, W. F. van Gunsteren, J. Chem. Phys. 2011 , 134, 084110] is simulated between atomistically resolved graphene surfaces. In the developed pure CG model, the two interaction sites of water and a combination of eight carbon atoms in the graphene surface are grouped together to construct water and surface CG beads. The pure CG potentials are constructed by iteratively matching the radial distribution functions and the density profiles of water beads in the pore with the corresponding mixed‐grained distributions. The constructed potentials are shown to be pore‐size transferable, capable of predicting structural properties of confined water over the whole range of pore sizes, ranging from extremely narrow pores to bulk water. The model is used to simulate a number of nanoconfined systems of a variety of pore sizes at constant temperature, constant parallel component of pressure, and constant surface area of the confining surfaces. The model is shown to predict the layering of water in contact with the surfaces, and the solvation force is in complete agreement with the mixed‐grained model. It is shown that water molecules in the pore have smaller parallel diffusion coefficients compared to bulk water. Well‐organized layers beside the surfaces are shown to have lower diffusion coefficients than diffuse layers. More information on the dynamics of water in the pore is obtained by calculating the rate of water exchange between slabs parallel to the surfaces. The time scale to achieve equilibrium for this process, depending on the pore width and on the degree of layering of water beside the surfaces, is a few nanoseconds in nanometric pores.  相似文献   

12.
This work reports Grand Canonical Monte-Carlo molecular simulation (GCMC) results of water adsorption in a priori hydrophobic microporous solids such as silicalite, a purely siliceous zeolite (Øpore~5 Å) and C-Y, a pure carbon replica of zeolite Y (Øpore~1 nm). At a first step, in both cases, the water-water interactions are described with the SPC model (calibrated for bulk liquid water) while water-substrate interactions are calculated within the framework of the PN-TrAZ model. This adsorbate-zeolite potential decomposes into short range (repulsive, inductive and dispersive) interaction terms with transferable parameters plus, in the case of silicalite, an electrostatic interaction term based on SPC partial charges for water and ab initio charges for silicalite. With such a standard approach, we found that water fills the microporous volume in both materials at pressure value well below P 0; hence does not show a strong hydrophobic behaviour at variance with reference experiments (V. Eroshenko et al. in C. R. Phys. 3:111, 2002). This indicates that common models used to describe confined polar molecules are far from being operative. We show on the basis of periodic ab initio calculations that confined water molecules in silicate have a dipole value ~10% smaller than that in the 3D liquid phase indicating that the environment felt by a confined water molecule in silicalite pores is not equivalent to that in the bulk liquid. This implies that classical simulations of polar molecules in ultra confining environment should rely on polarizable potentials (K.S. Smirnov, D. Bougeard in Chem. Phys. 292:53, 2003) if one wishes to capture the underlying physics. Reducing the SPC water dipole moment by 5% in GCMC calculations does allow reproducing experimental data.  相似文献   

13.
Molecular dynamics (MD) simulations have been performed to investigate the shear dynamics of hydration layers of the thickness of D=0.61-2.44 nm confined between two mica surfaces. Emphases are placed on the external shear response and internal relaxation properties of aqueous films. For D=0.92-2.44 nm liquid phase, the shear responses are fluidic and similar to those observed in surface force balance experiments [U. Raviv and J. Klein, Science 297, 1540 (2002)]. However, for the bilayer ice (D=0.61 nm) [Y. S. Leng and P. T. Cummings, J. Chem. Phys. 124, 74711 (2006)] significant shear enhancement and shear thinning over a wide range of shear rates in MD regime are observed. The rotational relaxation time of water molecules in this bilayer ice is found to be as high as 0.017 ms (10(-5) s). Extrapolating the shear rate to the inverse of this longest relaxation time, we obtain a very high shear viscosity for the bilayer ice, which is also observed quite recently for D< or =0.6+/-0.3 nm hydration layers [H. Sakuma et al., Phys. Rev. Lett. 96, 46104 (2006)]. We further investigate the boundary slip of water molecules and hydrated K(+) ions and concluded that no-slip boundary condition should hold for aqueous salt solution under extreme confinement between hydrophilic mica surfaces, provided that the confined film is of Newtonian fluid.  相似文献   

14.
The hydration mechanism of lithium halides was studied using time-of-flight secondary ion mass spectrometry as a function of temperature. The lithium halides embedded in thin films of amorphous solid water segregate to the surface at temperatures higher than 135-140 K, with efficiency increasing in the order of LiCl, LiBr, and LiI. A monolayer of LiCl and LiI adsorbed on the surface of amorphous solid water tends to diffuse into the bulk at 160 K. The infrared absorption band revealed that the aqueous lithium-halide solutions and crystals are formed simultaneously at 160 K; these phenomena are explicable as a consequence of the evolution of supercooled liquid water. The strong surfactant effect is inferred to arise from hydration of a contact ion pair having hydrophilic (lithium) and hydrophobic (halide) moieties. Furthermore, bulk diffusion of lithium halides might result from the formation of a solvent-separated ion pair in supercooled liquid water. The presence of two liquid phases of water with different local structures is probably responsible for the formation of these two hydrates, consistent with the calculated result reported by Jungwirth and Tobias[J. Phys. Chem. B 106, 6361 (2002)].  相似文献   

15.
We study some aspects of hydrophobic interaction between molecular rough and flexible model surfaces. The model we use in this work is based on a model we used previously (Eun, C.; Berkowitz, M. L. J. Phys. Chem. B 2009, 113, 13222-13228), when we studied the interaction between model patches of lipid membranes. Our original model consisted of two graphene plates with attached polar headgroups; the plates were immersed in a water bath. The interaction between such plates can be considered as an example of a hydrophilic interaction. In the present work, we modify our previous model by removing the charge from the zwitterionic headgroups. As a result of this procedure, the plate character changes: it becomes hydrophobic. By separating the total interaction (or potential of mean force, PMF) between plates into the direct and the water-mediated interactions, we observe that the latter changes from repulsive to attractive, clearly emphasizing the important role of water as a medium. We also investigate the effect of roughness and flexibility of the headgroups on the interaction between plates and observe that roughness enhances the character of the hydrophobic interaction. The presence of a dewetting transition in a confined space between charge-removed plates confirms that the interaction between plates is strongly hydrophobic. In addition, we notice that there is a shallow local minimum in the PMF in the case of the charge-removed plates. We find that this minimum is associated with the configurational changes that flexible headgroups undergo as the two plates are brought together.  相似文献   

16.
We present a high energy x-ray reflectivity study of the density profiles of water and ice at hydrophobic and hydrophilic substrates. At the hydrophobic water/octadecyl-trichlorosilane (water-OTS) interface, we find clear evidence for a thin density depletion layer with an integrated density deficit corresponding to approximately 40% of a monolayer of water molecules. We discuss the experimental results in terms of a simple model of hydrophobic/hydrophilic solid-liquid interfaces. Our results also exclude the presence of nanobubbles. A detailed study of possible radiation damage induced by the intense x-ray beam at the dry OTS surface and at the ice-OTS, as well as at water-OTS interfaces, discloses that noticeable damage is only induced at the water-OTS interface, and thus points to the dominant role of highly mobile radicals formed in bulk water close to the interface.  相似文献   

17.
The density of states for bulk and confined fluids have been modeled using a recently proposed gamma distribution (Krishnan, S. H.; Ayappa, K. G. J. Chem. Phys. 2004, 121, 3197). The gamma distribution results in a closed form analytical expression for the velocity autocorrelation function and the relaxation time of the fluid. The two parameters of the gamma distribution are related analytically to the second and fourth frequency moments of the fluid using short time expansions. The predictions by the proposed gamma model are compared with the velocity autocorrelation functions obtained using the theory of instantaneous normal modes (INMs) and from molecular dynamics simulations. The model is applied to a bulk soft sphere liquid and fluids confined in a spherical cavity and slit-shaped pores. The gamma model is able to capture the resulting changes in relaxation time due to changes in density and temperature extremely well for both the bulk liquid and confined inhomogeneous fluid situations. In all cases, the predictions by the gamma model are superior to those obtained from the INM theory. In the case of the fluid confined in a slit pore, the loadings were obtained from a grand canonical Monte Carlo simulation where the pore is equilibrated with a bulk fluid. This is similar to a confinement situation in a surface force apparatus. The predicted relaxation times vs pore widths from the gamma model are seen to accurately capture the oscillations due to formation and disruption of layers within the slit pore.  相似文献   

18.
He M  Zeng Y  Sun X  Harrison DJ 《Electrophoresis》2008,29(14):2980-2986
We find that the morphology of porous polymer monoliths photopatterned within capillaries and microchannels is substantially influenced by the dimensions of confinement. Porous polymer monoliths were prepared by UV-initiated free-radical polymerization using either the hydrophilic or hydrophobic monomers 2-hydroxyethyl methacrylate or butyl methacrylate, cross-linker ethylene dimethacrylate and different porogenic solvents to produce bulk pore diameters between 3.2 and 0.4 microm. The extent of deformation from the bulk porous structure under confinement strongly depends on the ratio of characteristic length of the confined space to the monolith pore size. The effects are similar in cylindrical capillaries and D-shaped microfluidic channels. Bulk-like porosity is observed for a confinement dimension to pore size ratio >10, and significant deviation is observed for a ratio <5. At the extreme limit of deformation a smooth polymer layer 300 nm thick is formed on the surface of the capillary or microchannel. Surface tension or wetting also plays a role, with greater wetting enhancing deformation of the bulk structure. The films created by extreme deformation provide a rapid and effective strategy to create robust wall coatings, with the ability to photograft various surface chemistries onto the coating. This approach is demonstrated through cationic films used for electroosmotic flow control and neutral hydrophilic coatings for electrophoresis of proteins.  相似文献   

19.
The nature of the hydrophobicity found in rare-earth oxides is intriguing. The CeO2 (100) surface, despite its strongly hydrophilic nature, exhibits hydrophobic behaviour when immersed in water. In order to understand this puzzling and counter-intuitive effect we performed a detailed analysis of the confined water structure and dynamics. We report here an ab-initio molecular dynamics simulation (AIMD) study which demonstrates that the first adsorbed water layer, in immediate contact with the hydroxylated CeO2 surface, generates a hydrophobic interface with respect to the rest of the liquid water. The hydrophobicity is manifested in several ways: a considerable diffusion enhancement of the confined liquid water as compared with bulk water at the same thermodynamic condition, a weak adhesion energy and few H-bonds above the hydrophobic water layer, which may also sustain a water droplet. These findings introduce a new concept in water/rare-earth oxide interfaces: hydrophobicity mediated by specific water patterns on a hydrophilic surface.  相似文献   

20.
Frequency‐dependent NMR relaxation studies have been carried out on water (polar) and cyclohexane (nonpolar) molecules confined inside porous ceramics containing variable amounts of iron oxide (III). The porous ceramics were prepared by compression of powders mixed with iron oxide followed by thermal treatment. The pore size distribution was estimated using a technique based on diffusion in internal fields that exposed a narrow distribution of macropore sizes with an average pore dimension independent of iron oxide content. The relaxation dispersion curves were obtained at room temperature using a fast field cycling NMR instrument. They display an increase of the relaxation rate proportional to the iron oxide concentration. This behavior is more prominent at low Larmor frequencies and is independent of the polar character of the confined molecules. The results reported here can be fitted well with a relaxation model considering exchange between molecules in the close vicinity of the paramagnetic centers located in the surface and bulk‐like molecules inside the pores. This model allows the extraction of the transverse diffusional correlation time that can be related to the polar character of the confined molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号