首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present article, the effect of heat source temperature, heat sink temperature, short-tube orifice diameter and short-tube orifice length on the performance characteristics of HFC-140A and HFC-134a refrigeration system using a short-tube orifice as expansion device, i.e., mass flow rate, cooling capacity, compressor pressure ratio, power consumption, and second law efficiency are experimentally studied. The short-tube orifices diameters ranging from 0.849 to 1.085 mm with length ranging from 10 to 20 mm are used in this examination. The test run are done at heat source temperature ranging between 16.5 and 18.5°C, and heat sink temperature ranging between 30 and 35°C. The results show that the tendency of second law efficiency is increased as the short-tube orifice diameter and heat source temperature are enhanced, but it is decreased by increasing the short-tube orifice length and heat sink temperature. Under the similar conditions, the mass flow rate, cooling capacity, and compressor power consumption obtained from HFC-410A are higher than those obtained from HFC-134a.  相似文献   

2.
To determine the value of the critical pressure ratio in orifices, critical mass flow rate of air through straight-bore orifices and knife orifices was measured. The straight-bore test orifices with varying orifice diameters of 4, 7, 10 and 12 mm were installed in a 20-mm pipe. The knife or sharp-edged test orifices with orifice diameters of 10, 15 and 18 mm were installed in a 40-mm pipe. The test orifices with diameter ratio from 0.2 to 0.6 exhibited a constancy of discharge at ratios of the downstream to upstream pressures of less than 0.17, which is considerably lower than the theoretical critical pressure ratio for an ideal nozzle. An empirical expression to calculate the value of the critical pressure ratio, which includes the relevant primary parameters and which fits the data well, is suggested for engineering design purposes.  相似文献   

3.
We present a new discharge coefficient correction method for the orifice equation for R-123 two-phase flows. In this method, an evaporator is mounted after the orifice as a vapor refrigeration cycle, and the evaporator is used to measure the quality of downstream flow through the orifice. Quality is estimated from the measured temperature and pressure of the evaporator inlet and outlet, respectively, instead of by direct measurement of quality. The condition of upstream flow of the orifice is the liquid state at 3 bar and 60 °C. The liquid flow is changed to two-phase flow after passing through the orifice. Orifice diameters of 300, 350, 400, and 450 μm are used for the experiment, and the results are analyzed. Experiments are conducted for various conditions of flow rate between 20 and 70 ml/min and for cooling loads of 60, 80, and 100 W. The results show that the quality of flow downstream from the orifice can be calculated using the enthalpy difference between the inlet and outlet of the evaporator. An equation to determine the discharge coefficient is formulated as a function of quality. We expect that these results can be used to help design a small cooling system.  相似文献   

4.
Measurements were conducted on Refrigerant-134a flowing through short tube orifices with length-to-diameter (L/D) ratios ranging from 5 to 20. Both two-phase and subcooled liquid flow conditions entering the short tube were examined for upstream pressures ranging from 896 to 1448 kPa and for qualities as high as 10% and subcoolings as high as 13.9°C. Data were analyzed as a function of the main operating variables and tube geometry. Semi-empirical models for both single- and two-phase flow at the inlet of the short tubes were developed to predict the mass flow of Refrigerant-134a through short tube orifices.

Choked flow conditions for Refrigerant-134a were typically established when downstream pressures were reduced below the saturation pressure corresponding to the inlet temperature. The flow rate strongly depended on the upstream pressure and upstream subcooling/quality. The mass flow also depended on cross-sectional area and short tube length. The mass flow model utilized a modified orifice equation that formulated the mass flow as a function of normalized operating variables and short tube geometry. For a two-phase flow entering the short tube, the modified orifice equation was corrected using a theoretically derived expression that related the liquid portion of the mass flow under two-phase conditions to a flow that would occur if the flow were a single-phase liquid. It was found that for sharp-edged short tubes with single- and two-phase flow, approximately 95% of the measured data and model's prediction were within ±15% of each other.  相似文献   


5.
An experimental study was performed on a two-phase critical flow with a non-condensable gas at high pressure conditions. Experimental data for the critical flow rates were generated by using sharp-edged stainless steel pipes with an inner diameter of 10.9 mm, a thickness of 3.2 mm, and a length of 1000 mm. The test conditions were varied by using the stagnation pressures of 4.0, 7.0, and 10.0 MPa, water subcoolings of 0.0, 20.0, and 50.0 °C, and nitrogen gas flow rates of 0.0–0.22 kg/s. The experimental results show that the critical mass flux decreases rapidly with an increase of the volumetric non-condensable gas fraction. Also the critical mass flux increases with an increase of the stagnation pressure and a decrease of the stagnation temperature. An empirical correlation of the non-dimensional critical mass flux, which is expressed as an exponential function of the non-condensable gas fraction of the volumetric flow, is obtained from the experimental data.  相似文献   

6.
A method is introduced to determine the valve flow coefficient and resistance coefficient with the experiment of air discharging from a reservoir, and with the least squares method to fit the cumulative molar quantities discharged. The test valve is an angle-seat valve (Type 2632, Bürkert) with different apertures. At pressure difference of about 6 bar, the choked flow occurs when the valve aperture over 60%. Both the valve coefficient and resistance coefficient model can exactly predict the flowrate for the non-choked flow, while there are larger deviations for the choked flow. The modified equation for the choked flow can improve the prediction. In the resistance coefficient model, the value of resistance coefficient and the discharged cumulative molar quantities obtained with both the compressible and incompressible assumption are very close. The compressibility of air is negligible within the experimental pressure difference of about 6 bar. The additivity of the resistance coefficient makes the model more convenient to use.  相似文献   

7.
Multiphase chemical microreactors require a detailed knowledge of the flow conditions inside the reaction system. This paper reports flow visualization measurements of the two-phase gas–liquid flow pattern and the liquid velocity distribution inside liquid plugs of an intermittent flow. Rectangular cross-section silicon microchannels with hydraulic diameters between 187.5 and 218 μm are fabricated. Laser Induced Fluorescence (LIF) is used to determine the flow pattern. To analyze the influence of the liquid properties and the channel diameter on the two-phase flow pattern, we present flow regime maps using different channel geometries and fluids. A universal flow pattern map based on dimensional analysis is presented. In contrast to microchannel flows, a great number of correlations for flow characteristics for multiphase flow in (round) pipes with diameters >1 mm exist. We compare our experimental results from optical flow visualizations in microreactors with common flow correlations and regime maps for macro- and microchannels. The recirculation motion in the liquid segments of an intermittent gas–liquid flow is analyzed using micron-resolution particle image velocimetry (μPIV). The velocity distribution influences the mixing and the mass transport towards the reactive phase interface dealing with two-phase chemical reactions. For straight microchannels hardly any mass transport over the center line is quantified. For enhanced mixing geometrical adaptations are suggested.  相似文献   

8.
One of the serious problems associated with the operation of PCM storage system is the heat transfer in and out of the element containing the PCM. This paper presents the results of an experimental investigation of the effects of radial fins and turbulence promoters on the enhancement of phase change heat transfer external to a horizontal tube submersed in the PCM with the working fluid flowing through it. The experimental measurements were realized on a bare cupper tube and an identical cupper tube fitted with radial fins. The fins investigated are 40, 60, 120 and 180 mm diameters. A turbulence promoter made of stainless steel wire of 1.0 mm diameter coiled in a helical form with a pitch of 25.0 mm was inserted into the cupper tubes. The tests were realized on bare tubes, finned tubes and finned tubes with the turbulence promoter inserted into the finned tubes. The measurements were realized for the working fluid temperatures in the range of −10 °C, to −25 °C and six values of the mass flow rate ranging from 0.013 to 0.031 kg/s. The position of the phase interface was photographed by a high resolution digital camera and scanned to determine the real interface position by comparison with a precision measuring scale. The results of the phase interface position, velocity of the interface, solidified mass fraction and the time for complete solidification are presented in function of the working fluid temperature, the working fluid mass and the tube arrangements. The results are presented and discussed.  相似文献   

9.
Flow regime transitions due to cavitation in the flow through an orifice   总被引:4,自引:0,他引:4  
This paper presents both experimental and theoretical aspects of the flow regime transitions caused by cavitation when water is passing through an orifice. Cavitation inception marks the transition from single-phase to two-phase bubbly flow; choked cavitation marks the transition from two-phase bubbly flow to two-phase annular jet flow.

It has been found that the inception of cavitation does not necessarily require that the minimum static pressure at the vena contracta downstream of the orifice, be equal to the vapour pressure liquid. In fact, it is well above the vapour pressure at the point of inception. The cavitation number [σ = (P3Pv)/(0.5 pV2); here P3 is the downstream pressure, Pv is the vapour pressure of the liquid, ρ is the density of the liquid and V is the average liquid velocity at the orifice] at inception is independent of the liquid velocity but strongly dependent on the size of the geometry. Choked cavitation occurs when this minimum pressure approaches the vapour pressure. The cavitation number at the choked condition is a function of the ratio of the orifice diameter (d) to the pipe diameter (D) only. When super cavitation occurs, the dimensionless jet length [L/(D - d); where L is the dimensional length of the jet] can be correlated by using the cavitation number. The vaporization rate of the surface of the liquid jet in super cavitation has been evaluated based on the experiments.

Experiments have also been conducted in which air was deliberately introduced at the vena contracta to simulate the flow regime transition at choked cavitation. Correlations have been obtained to calculate the critical air flow rate required to cause the flow regime transition. By drawing an analogy with choked cavitation, where the air flow rate required to cause the transition is zero, the vapour and released gas flow rate can be predicted.  相似文献   


10.
The periodicity of droplets emanating from a single and from two orifices with a common fluid reservoir between them was investigated. Experiments were conducted in which the effects of variations in mass flow rate, orifice diameter and common reservoir volume were determined. The results reported herein indicate that dripping from an orifice at relatively low mass flow rates is singly periodic and that the period between droplets is inversely proportional to the imposed mass flow rate. A simple model of the singly periodic droplet emission process is developed and supported by the experimental results. Period doubling initiates and continues to develop with further increases in the mass flow rate. It is marked by the introduction of additional, smaller diameter droplets that are interspersed temporally among the larger, primary droplets. The presence of a common fluid reservoir volume between two orifices of the same diameter is shown for the singly periodic regime not to alter the droplet emission rate of either orifice as compared to its single orifice counterpart. The volume of the reservoir, however, does affect the mass flow rate per orifice necessary for initial period doubling, with this mass flow rate being lower for a smaller reservoir volume.  相似文献   

11.
The effect of oil and water velocities, pipe diameter and oil viscosity on the transition from stratified to non-stratified patterns was studied experimentally in horizontal oil-water flow. The investigations were carried out in a horizontal acrylic test section with 25.4 and 19 mm ID with water and two oil viscosities (6.4 and 12 cP) as test fluids. A high-speed video camera was used to study the flow structures and the transition. At certain oil velocity, stratified flow was found to transform into bubbly and dual continuous flows as superficial water velocity increased for both pipe diameters using the 12 cP oil viscosity. The transition to bubbly flow was found to disappear when the 6.4 cP oil viscosity was used in the 25.4 mm pipe. This was due to the low E?tv?s number. Transition to dual continuous flow occurred at lower water velocity for oil velocity up 0.21 m/s when 6.4 cP oil was used in the 25.4 mm ID pipe, while for Uso > 0.21 m/s, the transition appeared at lower water velocity with the 12 cP oil.The effect of pipe diameter was also found to influence the transition between stratified and non-stratified flows. At certain superficial oil velocity, the water velocity required to form bubbly flow increased as the pipe diameter increased while the water velocity required for drop formation decreased as the pipe diameter increased. The maximum wave amplitude was found to grow exponentially with respect to the mixture velocity. The experimental maximum amplitudes at the transition to non-stratified flow agreed reasonably well with the critical amplitude model. Finally, it was found that none of the available models were able to predict the present experimental data at the transition from stratified to non-stratified flow.  相似文献   

12.
Two-phase flow measurements with sharp-edged orifices   总被引:10,自引:0,他引:10  
This paper contains the results of a set of two-phase flow measurements of 4 different ratios of vapor to liquid density (up to 0.328) across a sharp-edged circular orifice. Test fluid was R-113. Tests were carried out upon 3 orifices whose diameter ratios were 0.312, 0.439 and 0.625. The test quality ranged from 0–100%, while the mass velocity from 917–1477 kg/m2.s. On the basis of a modified separated flow model, a relationship is developed for the flow rate and quality and is compared with experimental data and 5 proposed correlations. Comparison shows this method can be used to calculate the flow rate or the quality of vapor liquid (or steam water) mixture in the range 0.00455 to 0.328 of the density ratio, and in pipe size ranging from 8 to 75 mm (β = 0.25–0.75).

The RMS error of this method is about 12% when the quality, x, ranges from 2% to 100%.  相似文献   


13.
Critical heat flux (CHF) experiments using deionized water as working fluid have been conducted in a range of pressure from 0.6 to 4.2 MPa, mass flow velocity from 60 to 130 kg/ms and wall heat flux from 10 to 90 kW/m2 for vertical narrow annuli with annular gap sizes of 0.95 and 1.5 mm. We found that the CHF, occurring only on the inside tube, or on the outside tube or on both tubes of the annular channel, depends on the heat flux ratio between surfaces of the outside and inside tubes. The CHF, occurring on the surface of the inside tube, reaches the maximum value under the pressure of 2.3 MPa while it occurring on the surface of the outside tube keeps increasing with the increase of the pressure. The CHF, occurring on the inside or outside tubes, increases with the increase of the mass flow velocity and the annular gap size; and decreases with the increase of critical quality and the other tube wall heat flux. Empirical correlations, which agree quite well with the experimental data, have been developed to predict the CHF occurring on surfaces of the inside or outside tubes of the narrow annular channel on the conditions of low pressure and low flow.  相似文献   

14.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

15.
Measurements of liquid base film thickness distribution have been obtained for 206 horizontal annular two-phase (air–water) flow conditions in 8.8 mm, 15.1 mm, and 26.3 mm ID tubes. It is found that the trends in base film thickness measurement do not match trends in the literature for average film thickness, which considers waves and base film together. An iterative critical friction factor model is used to model circumferentially-averaged base film thickness; an explicit, empirical correlation is also provided. Asymmetry is well-correlated by a modified Froude number based on the correlated base film thickness and the gas mass flux. The iterative model is also extended to estimate the critical film flow rate.  相似文献   

16.
The effect of tube diameter on two-phase frictional pressure drop was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6 and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01-50 m/s and 0.01-3 m/s, respectively. The gas and liquid flow rates were measured and the two-phase flow pattern images were recorded using high-speed CMOS camera. Unique flow patterns were observed for smaller tube diameters. Pressure drop was measured and compared with various existing models such as homogeneous model and Lockhart-Martinelli model. It appears that the dominant effect of surface tension shrinking the flow stratification in the annular regime is important. It was found that existing models are inadequate in predicting the pressure drop for all the flow regimes visualized. Based on the analysis of present experimental frictional pressure drop data a correlation is proposed for predicting Chisholm parameter “C” in slug annular flow pattern. For all other flow regimes Chisholm’s original correlation appears to be adequate except the bubbly flow regime where homogeneous model works well. The modification results in overall mean deviation of pressure drop within 25% for all tube diameters considered. This approach of flow regime based modification of liquid gas interaction parameter appears to be the key to pressure drop prediction in narrow tubes.  相似文献   

17.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

18.
The study is motivated by the problem of pipeline corrosion due to water accumulation at low spots. Lab-scale experiments were conducted to identify the critical conditions required for the onset of water displacement by oil flow from a low horizontal section into an upward inclined section of the pipeline. Two test loops with pipe diameters of 27 mm and 41 mm I.D. with diesel flow were used. Water withdrawal from tapping valves distributed along the up-hill section enabled to follow the water displacement for oil flow rates exceeding the critical value.  相似文献   

19.
An experimental investigation was conducted to study the influence of a layer of 3.6-mm-diameter steel spheres on the mass flow during flash boiling in a glass pressure vessel. It was observed that the steel spheres added numerous heterogeneous nucleation sites within the liquid and promoted abundant vapor bubble growth during depressurization. The steel spheres were in contact with each other and with the interior of the glass vessel. The data from these experiments were compared with baseline experimental results primarily with regard to the mass flow. Each test was run for 60 s, using controlled variables of orifice diameters (1.59 and 5.56 mm), initial refrigerant amounts (0.23, 0.45, and 0.68 kg), initial pressures (575 and 840 kPa), and vessel geometries (665 and 1110 ml). Pressures, temperatures, and mass flow rates, along with calculated saturation temperatures, amount of superheat, mass flux, and total mass flashed, were used to compare the baseline experiments with the enhanced boiling method. Results showed an increase in the total mass flashed at each test condition, ranging from an average of 22% to 81% with respect to baseline experiments.  相似文献   

20.
A general heat transfer correlation for non-boiling gas–liquid flow with different flow patterns in horizontal pipes is proposed. In order to overcome the effect of flow pattern on heat transfer, a flow pattern factor (effective wetted-perimeter) is developed and introduced into our proposed correlation. To verify the correlation, local heat transfer coefficients and flow parameters were measured for air–water flow in a pipe in the horizontal position with different flow patterns. The test section was a 27.9 mm ID stainless steel pipe with a length to diameter ratio of 100. A total of 114 data points were taken by carefully coordinating the liquid and gas superficial Reynolds number combinations. The heat transfer data were measured under a uniform wall heat flux boundary condition ranging from about 3000 W/m2 to 10,600 W/m2. The superficial Reynolds numbers ranged from about 820 to 26,000 for water and from about 560 to 48,000 for air. These experimental data including different flow patterns were successfully correlated by the proposed general two-phase heat transfer correlation with an overall mean deviation of 5.5%, a standard deviation of 11.7%, and a deviation range of −18.3% to 37.0%. Ninety three percent (93%) of the data were predicted within ±20% deviation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号