首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials, and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials. A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper, which can achieve 600°C at the interface. Based on this system, the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated, under different interface pressures, interface roughnesses and temperatures, respectively. At the same time, the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated. Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.  相似文献   

2.
A plane problem for an electrically conducting interface crack in a piezoelectric bimaterial is studied. The bimaterial is polarized in the direction orthogonal to the crack faces and loaded by remote tension and shear forces and an electrical field parallel to the crack faces. All fields are assumed to be independent of the coordinate co-directed with the crack front. Using special presentations of electromechanical quantities via sectionally-analytic functions, a combined Dirichlet–Riemann and Hilbert boundary value problem is formulated and solved analytically. Explicit analytical expressions for the characteristic mechanical and electrical parameters are derived. Also, a contact zone solution is obtained as a particular case. For the determination of the contact zone length, a simple transcendental equation is derived. Stress and electric field intensity factors and, also, the contact zone length are found for various material combinations and different loadings. A significant influence of the electric field on the contact zone length, stress and electric field intensity factors is observed. Electrically permeable conditions in the crack region are considered as well and matching of different crack models has been performed.  相似文献   

3.
Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrereinforced composite materials are proposed.The performed study is based on the asymptotic reduction of the governing biharmonic problem into two harmonic problems.All solutions are obtained in a closed analytical form.The obtained results can be used for the calculation of pull-out and pushout tests,as well as for the investigation of the fracture of composite materials.  相似文献   

4.
A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations are derived in detail for the interface element.All the involved matrices are of the same form as those of a solid element,which makes the incorporation of the model into a finite element program straightforward.Three examples are then numerically simulated using the interface element.Reasonable results confirm the correctness of the proposed model and motivate its application in hydromechanical contact problems in the future.  相似文献   

5.
厚度微米级热界面材料的热物性参数,可通过相敏瞬态热反射测量法拟合得出。本文对该方法的原理进行了发展研究:基于数据测量过程中,不同调制频率区间对应在样品中的热穿透深度不同(高频区间内热穿透深度小,低频区间内热穿透深度大),提出针对多层材料,分频率段依次对各层热参数拟合的方法。本方法的途径是通过不同频率区间的选择,沿着热穿透方向依次对各层参数进行拟合,从而减少后层材料未知参数对当前层参数拟合的影响,同时减少对已知参数条件的要求,提高了拟合结果的质量。用本文方法对四层材料样品做了测量及拟合数据对比,结果表明拟合结果相对误差保持在±8%之内,同时对界面热导的信号敏感度进行了分析,发现拟合参数的信号敏感度依赖于频率的选择。  相似文献   

6.
Icy road conditions and tire operational parameters play a vital role in determining the overall performance of a vehicle. This study builds on prior work in the researchers’ group. The Advanced Tire-Ice Interface Model (ATIIM) simulates the temperature rise in the contact patch based on the measured pressure distribution and the thermal properties of the tread compound and of the ice surface. It has the capability to simulate the height of the thin water film created from the melted ice, to predict the tractive performance, and to estimate the viscous friction due to the water layer and the influence of braking operations, including the locked wheel condition. The experimental investigation included measuring the bulk temperature distribution in the contact patch to validate the temperature rise simulations of the ATIIM. As shown by the simulations and the test data, a rise in temperature was observed from the leading edge to the trailing edge of the contact patch. As the wheel load increases, the difference in temperature rise increases, as also reflected in the experimental study. When the temperature difference was significant, a thin water film was observed that resulted in a reduction of friction, which was simulated using the ATIIM.  相似文献   

7.
铸件凝固温度场有限元分析中界面热阻的处理   总被引:3,自引:0,他引:3  
提出一种处理铸件与铸型界面热阻问题的虚拟界面单元法,并给出了有限元计算公式。由于该公式不显含单元厚度(△l),故该单元厚度△l可取任意值。当△l取为零时,使问题处理变得极为方便。针对某一具体金属型铝合金活塞的铸造凝固过程,按考虑和不考虑铸件与铸型间热阻影响两种方法作了有限元计算,通过与实测值相比较,本文提出的算法其计算精度远高于不考虑铸件与铸型间热阻影响的计算结果。另外.该方法使有限元建模方便、通用性强。  相似文献   

8.
An interface crack with an artificial contact zone at the right-hand side crack tip between two dissimilar finite-sized piezoelectric materials is considered under remote mixed-mode loading. To find the singular electromechanical field at the crack tip, an asymptotic solution is derived in connection with the conventional finite element method. For mechanical loads, the stress intensity factors at the singular points are obtained. As a particular case of this solution, the contact zone model (in Comninou’s sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are derived. The dependencies of the contact zone lengths on external load coefficients are illustrated in graphical form. For a particular case of a short crack with respect to the dimensions of the bimaterial compound, the numerical results are compared to the exact analytical solutions, obtained for a piezoelectric bimaterial plane with an interface crack.  相似文献   

9.
In this work, we propose an adaptive subdivision piecewise linear interface calculation (PLIC) for 2D multimaterial hydrodynamic simulation codes. Classical volume‐of‐fluid PLIC technique uses one line segment and one given normal to separate two materials. Unfortunately, these paradigms are not sufficient when filaments occur, leading to the creation of flotsam and jetsam. We propose to detect such situations and to split the computational mixed cell into reconstruction subzones. Within these subzones, one computes a so‐called subgradient using an incomplete stencil of neighbors, and the material is distributed in these subzones. Given subzone volume fraction and the subgradient, one computes one line segment using classical PLIC method, leading to a modified PLIC method for subscale material entity. The subdivision procedure relies on a splitting point, which is chosen as a specific information about the relative location of the filament in the cell, leading to an adaptive subdivision for PLIC reconstructions. Numerical tests are carried out in a 2D Lagrange + Remap multimaterial hydrodynamics Eulerian code. Static and dynamic filaments and fragments are simulated in advection or stretched in vortex‐like motion. The full hydrodynamics equations are solved on a more realistic test (shock‐bubble impact). Results show that our approach supplements classical PLIC method for situations when filaments and fragments occur. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Summary A plane strain problem for a crack with a frictionless contact zone at the leading crack tip expanding stationary along the interface of two anisotropic half-spaces with a subsonic speed under the action of various loadings is considered. The cases of finite and infinite-length interface cracks under the action of a moving concentrated loading at its faces are considered. A finite-length crack for a uniform mixed-mode loading at infinity is considered as well. The associated combined Dirichlet-Riemann boundary value problems are formulated and solved exactly for all above-mentioned cases. The expressions for stresses and the derivatives of the displacement jumps at the interface are presented in a closed analytical form for an arbitrary contact zone length. Transcendental equations are obtained for the determination of the real contact zone length, and the associated closed form asymptotic formulas are found for small values of this parameter. It is found that independently of the types of the crack and loading, an increase of the crack tip speed leads to an increase of the real contact zone length and the correspondent stress intensity factor. The latter increase significantly for an interface crack tip speed approaching the Ragleigh wave speed.  相似文献   

11.
IntroductionTheinterfacialdebondingmaycausethemicrovoids’nucleationinaparticle_reinforcedcomposite .Theinterfacialdebondingisusuallygovernedbythetensionstresscriterion[1,2 ]orenergycriterion[3,4].Intherecentresearchworks,thepresentauthorspointedoutthatthean…  相似文献   

12.
爆炸焊接是一门双金属复合工程技术,在炸药爆轰载荷驱动下,飞板高速冲击基板时,两金属板复合界面处在高温高压作用下材料发生塑性流动并形成周期性波状界面,波状界面的形成与复合界面处的材料熔化和变形直接相关。本文应用物质点法对爆炸焊接界面波的形成和界面温度场进行数值模拟,同时开展双金属爆炸焊接实验,并结合物质点法的三维数值模拟对爆炸焊接界面波的形态和界面材料高温软化进行分析。  相似文献   

13.
An experimental study on the thermal performance of ground heat exchanger   总被引:4,自引:0,他引:4  
A knowledge of ground thermal properties is most important for the proper design of large GHE (ground heat exchanger) systems. Thermal response tests have so far been used primarily not only for in situ determination of design data for GHE systems, but also for the evaluation of grout material, heat exchanger types and groundwater effects. The main purpose has been to determine in situ values of effective ground thermal conductivity, including the effect of groundwater flow and natural convection in boreholes.  相似文献   

14.
A cracked orthotropic semi-infinite plate under thermal shock is investigated. The thermal stresses are generated due to sudden cooling of the boundary by ramp function temperature change. The superposition technique is used to solve the problem. The crack problem is formulated by applying the thermal stresses obtained from the uncracked plate with opposite sign to be the only external loads on the crack surfaces as the crack surface tractions. The Fourier transform technique is used to solve the problem leading to a singular equation of the Cauchy type. The singular integral equation is solved numerically using the expansion method. The influence of the material orthotropy on the stress intensity factors is shown by comparing the results obtained for different orthotropic materials and isotropic materials in the case of plane stress. The numerical results of the stress intensity factors are demonstrated as a function of time, crack length, location of the crack and the duration of the cooling rate.  相似文献   

15.
Exact mathematical analyses are presented for interface crack between dissimilar elastic-plastic materials. The deformation theory of plasticity is used. For two kinds of boundary conditions on crack faces: (1) traction free and (2) frictionless contact, the asymptotic separable solutions of the HRR type with full continuity are obtained, which exist only for special mixity parameterM p. For any assignedM p, the separable solutions of the HRR type which contained weak discontinued line are further obtained. All of our results not only satisfy the continuity of displacements and that of tractions on the interface, but also they are free of oscillatory singularity and interpenetration of crack faces.This investigation is supported by the National Natural Science Foundation of China  相似文献   

16.
We examine the existence of neutral nano-inhomogeneities in a hyperelastic inhomogeneity-matrix system subjected to finite plane deformations when uniform (in-plane) external loading is imposed on the matrix. We incorporate nanoscale interface effects by representing the material interface as a separate hyperelastic membrane, perfectly bonded to the surrounding bulk material. We show that for any type of hyperelastic bulk material and practically any type of hyperelastic membrane representing the interface, neutral nano-inhomogeneities do exist but are necessarily circular in shape. We show further that the radius of the circular neutral nano-inhomogeneity is determined by the (uniform) external loading (which must be hydrostatic) and the respective strain energy density functions associated with the hyperelastic bulk and interface materials.  相似文献   

17.
We derive, by virtue of the unified Stroh formalism, the extremely concise and elegant solutions for two-dimensional and (quasi-static) time-dependent Green's functions in anisotropic magnetoelectroelastic multiferroic bimaterials with a viscous interface subjected to an extended line force and an extended line dislocation located in the upper half-plane. It is found for the first time that, in the multiferroic bimaterial Green's functions, there are 25 static image singularities and 50 moving image singularities in the form of the extended line force and extended line dislocation in the upper or lower half-plane. It is further observed that, as time evolves, the moving image singularities, which originate from the locations of the static image singularities, will move further away from the viscous interface with explicit time-dependent locations. Moreover, explicit expression of the time-dependent image force on the extended line dislocation due to its interaction with the viscous interface is derived, which is also valid for mathematically degenerate materials. Several special cases are discussed in detail for the image force expression to illustrate the influence of the viscous interface on the mobility of the extended line dislocation, and various interesting features are observed. These Green's functions can not only be directly applied to the study of dislocation mobility in the novel multiferroic bimaterials, they can also be utilized as kernel functions in a boundary integral formulation to investigate more complicated boundary value problems where multiferroic materials/composites are involved.  相似文献   

18.
A new procedure for modeling the conjugate heat‐transfer process between fluid and structure subdomains is presented. The procedure relies on higher‐order combined interface boundary conditions (CIBC) for improved accuracy and stability. Traditionally, continuity of temperature and heat flux along interfaces is satisfied through algebraic jump conditions in a staggered fashion. More specifically, Dirichlet temperature conditions are usually imposed on the fluid side and Neumann heat‐flux conditions are imposed on the solid side for the stability of conventional sequential staggered procedure. In this type of treatment, the interface introduces additional stability constraints to the coupled thermal simulations. By utilizing the CIBC technique on the Dirichlet boundary conditions, a staggered procedure can be constructed with the same order of accuracy and stability as those of standalone computations. Using the Godunov–Ryabenkii normal‐mode analysis, a range of values of the coupling parameter is found that yields a stable and accurate interface discretization. The effectiveness of the method is investigated by presenting and discussing performance evaluation data using a 1D finite‐difference formulation for each subdomain. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.  相似文献   

20.
We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion. In order to capture the influence of interface energy on the local elastic field as the size of the inclusion approaches the nanoscale, we refer to the Gurtin-Murdoch model of interface elasticity to describe the inclusion-matrix interface as an imaginary and extremely stiff but zero-thickness layer of a finite stretching modulus. As opposed to isotropic cases in which the effects of interface elasticity are usually assumed to be uniform (described by a constant interface stretching modulus for the entire interface), the anisotropic case considered here necessitates non-uniform effects of interface elasticity (described by a non-constant interface stretching modulus), because the bulk surrounding the interface is anisotropic. To this end, we treat the interface stretching modulus of the anisotropic composite system as a variable on the interface curve depending on the specific tangential direction of the interface. We then devise a unified analytic procedure to determine the full stress field in the inclusion and matrix, which is applicable to the arbitrary orientation and aspect ratio of the inclusion, an arbitrarily variable interface modulus, and an arbitrary uniform external loading applied remotely. The non-uniform interface effects on the external loading-induced stress distribution near the interface are explored via a group of numerical examples. It is demonstrated that whether the nonuniformity of the interface effects has a significant effect on the stress field around the inclusion mainly depends on the direction of the external loading and the aspect ratio of the inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号