首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

2.
The morphology and electrical properties of gold nanoparticles (AuNP) layer vacuum-deposited onto spin-cast thin films of poly(3-hexylthiophene), P3HT, were studied. The electrical conductivity was measured during temperature cycling and related to the morphology of the same composite structures, which was monitored by transmission electron microscopy (TEM) and extra-high resolution scanning electron microscopy (XHR SEM). Comparison to the analogous polystyrene/AuNP layers was made to distinguish the role of the polymer support on the morphology and electrical properties of the nanoparticles assembly. Gold deposited in a very thin layer formed a nanoparticles-like island structure with the morphology depending on the effective thickness of the deposited layer and on its subsequent thermal treatment. A stabilizing effect of the thiophene–gold interaction on the nanoparticles morphology was observed.  相似文献   

3.
A simple, inexpensive, single-step synthesis of gold and silver nanoparticles using poly(allylamine) (PAAm) as a reducing and stabilizing agent is reported. The synthetic process was carried out in aqueous solution, making the method versatile and environmentally friendly. The synthesized polymer-stabilized nanoparticles are stable in water without particle aggregation at room temperature for at least a month. We demonstrate successful ligand exchange on the polymer-stabilized gold nanoparticles (AuNPs) with a variety of omega-functionalized acid-, alcohol-, amine-, and biotin-terminated alkylthiols. The methodologies, including ligand exchange, also are applicable for the generation of finely dispersed silver nanoparticles. The synthesized gold and silver nanoparticles are characterized by UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The different ligand-stabilized AuNPs are also analyzed by Fourier transform infrared (FTIR) spectroscopy.  相似文献   

4.
Lead sulfide (PbS) nanoparticles have been synthesized in aqueous solutions by a reaction between inorganic lead salts and sodium sulfide and stabilized using the cationic polyelectrolytes branched poly(ethylenimine) (PEI), poly(allylamine hydrochloride) (PAH), and poly(diallyldimethylammonium chloride) (PDDA). The structures of the polyamine-stabilized nanoparticle dispersions were examined in detail using UV-vis spectroscopy, small-angle X-ray scattering (SAXS), static and dynamic electrophoretic mobility measurements, and transmission electron microscopy (TEM). Considerable differences were found between the stabilizing efficiencies of these polyelectrolytes, which cannot be attributed to their charge densities or their persistence lengths. Small monodisperse nanoparticles of PbS with a tight stabilizing shell were consistently found only when PEI was used as a stabilizer even at high pH values, although its charge density is then very low. The excellence of PEI as a stabilizer is mainly due to the extensive branching of the chains and the presence of uncharged secondary and tertiary amine groups, which apparently serve as good anchoring points at the nanoparticle surfaces. None of the polyelectrolytes examined here provide long-term protection of the nanoparticles toward oxidation by air, showing that a need for more complex multipurpose stabilizers exists for aqueous PbS dispersions.  相似文献   

5.
The use of 4-(dimethylamino)pyridine to form an adhesion layer for the adsorption of anionic polyelectrolytes on gold surfaces is investigated. In situ surface plasmon resonance spectroscopy is used to monitor the changes in thickness of the adsorbed layers as a function of pH changes. Weak (poly(acrylate)) and strong (poly(styrenesulfonate)) polyelectrolytes have been studied. Although 4-(dimethylamino)pyridine is weakly bound to gold, it is not displaced by these polyelectrolytes and acts as an adhesion layer. The relationship of the interaction of anionic polyelectrolytes with 4-(dimethylamino)pyridine-modified planar gold and gold nanoparticles is discussed.  相似文献   

6.
Silica nanoparticles are used in various applications including catalysts, paints and coatings. To reach an optimal performance via stability and functionality, in most cases, the surface properties of the particles are altered using complex procedures. Here we describe a simple method for surface modification of silica nanoparticles (SNP) using sequential adsorption of oppositely charged components. First, the SNPs were made cationic by adsorption of a cationic polyelectrolyte. Poly(allylamine hydrochloride) (PAH) and polyethyleneimine (PEI) were chosen as polycations to investigate the difference between a linear and a branched polyelectrolyte. Next, the dispersion of cationic SNPs was combined with an anionic alkyl ketene dimer (AKD) emulsion. Using this approach cationic, hydrophobic silica particle dispersions were produced. Dynamic light scattering, contact angle measurements and atomic force microscopy (AFM) were used for analyzing the particle and coating layer properties. The chosen polyelectrolyte affected the structure of the dispersion. The layer build-up was studied in detail using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption and layer properties of the cationic polyelectrolytes adsorbed on silica as well as the affinity of AKD to this layer were explored. The application possibilities of the modified particle dispersions were demonstrated by preparing paper and silica surfaces with tailored properties, such as elevated surface hydrophobicity, using an ultrathin coating layer.  相似文献   

7.
Binding DNA on nanoparticles was pursued to form nanoplatform for formation of non‐viral gene system. Carboxyl derivatized gold‐aryl nanoparticles can bind with biodegradable cationic polyelectrolytes such as polydiallyldimethylammonium chloride (PDADMAC). In our study, we used gold‐aryl nanoparticles (AuNPs) treated with PDADMAC to form conjugates with non‐thiol or non‐disulfide modified oligonucleotide DNA. Both AuNPs‐DNA and PDADMAC‐AuNPs‐DNA biomaterials were characterized using UV–Vis, dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and agarose gel electrophoresis. UV–Vis showed a red shift in the plasmon peak as compared with unconjugated AuNPs. DLS measurements also showed difference in the size of AuNPs‐DNA and PDADMAC‐AuNPs‐DNA. AFM and TEM results showed proper conjugation of DNA with AuNPs. Gel electrophoresis proved the presence of interaction between PDADMAC‐AuNPs and negatively charged DNA. The binding of DNA in the described bioconjugate enhanced its protection against nuclease degradation and prolonged its presence in the digestive environment of DNase‐I. From the results we expect that these biomaterials can be used in nanomedicine with emphasis on non‐viral gene system.  相似文献   

8.
The layer by layer deposition process of polyelectrolytes is used to construct films equipped with several compartments containing "free polyelectrolytes". Each compartment corresponds to a stratum of an exponentially growing polyelectrolyte multilayer film, and two consecutive compartments are separated by a stratum composed of a linearly growing multilayer that acts as a barrier preventing polyelectrolyte diffusion from one compartment to another. We use hyaluronic acid/poly(L-lysine) as the system to build the compartments and the poly(styrene sulfonate)/poly(allylamine) system for the barrier. Using confocal microscopy, it is shown that poly(L-lysine) diffuses only within the compartment in which it was initially introduced during the film construction and is thus unable to cross the barriers. Using fluorescein isothiocyanate as a pH indicator, it is also shown that although poly(styrene sulfonate)/poly(allylamine) multilayers act as a barrier for polyelectrolytes, they do not prevent proton diffusion through the film. Such films open the route for multiple functionalization of biomaterial coatings.  相似文献   

9.
We report the unique layer-by-layer (LbL) assembly behavior of pH-sensitive star-shaped polyelectrolytes with both linear and exponential growth modes controlled by star architecture and assembly conditions. Cationic poly[2-(dimethylamino)ethyl methacrylate] and anionic poly(acrylic acid) stars were synthesized via "core-first" atom-transfer radical polymerization (ATRP) based on multifunctional initiators, in addition to their linear analogues. We demonstrated the LbL growth behavior as a function of deposition pH (ranging from 5 to 7), number of layers (up to 30 bilayers), and the method of assembly (dip- vs spin-assisted LbL). The spin-assisted LbL assembly makes it possible to render smoother and thinner LbL films with parameters controlled by the shear rate and pH conditions. In contrast, for dip-assisted LbL assembly, the pH-dependent exponential growth was observed for both linear and star polyelectrolytes. In the case of linear/linear pair, the exponential buildup was accompanied with a notable surface segregation which resulted in dramatic surface nonuniformity, "wormlike" heterogeneous morphology, and dramatic surface roughening. In contrast, star/linear and star/star LbL films showed very uniform and smooth surface morphology (roughness below 2.0 nm on the scale of 10 μm × 10 μm) with much larger thickness reaching up to 1.0 μm for 30 bilayers and rich optical interference effects. Star polyelectrolytes with partially screened charges and high mobility caused by compact branched architecture appear to facilitate fast diffusion and exponential buildup of LbL films. We suggest that the fast buildup prevents long-range lateral diffusion of polyelectrolyte star components, hinders large-scale microphase separation, and thus leads to unique thick, smooth, uniform, transparent, and colorful LbL films from star polyelectrolytes in contrast to mostly heterogeneous films from traditional linear counterparts.  相似文献   

10.
We report the synthesis of silver-decanethiolate (AgSC10) lamellar crystals. Nanometer-sized Ag clusters grown on inert substrates react with decanethiol vapor to form multilayer AgSC10 lamellar crystals with both layer-by-layer and in-plane ordering. The crystals have strong (010) texture with the layers parallel to the substrates. The synthesis method allows for a precise control of the number of layers. The thickness of the lamellae can be manipulated and systematically reduced to a single layer by decreasing the amount of Ag and lowering the annealing temperature. The single-layer AgSC10 lamellae are two-dimensional crystals and have uniform thickness and in-plane ordering. These samples were characterized with nanocalorimetry, atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray reflectivity (XRR), Fourier transform infrared spectroscopy (FTIR), and Rutherford backscattering spectroscopy (RBS).  相似文献   

11.
We report on the successful replication of the smallest pores in anodized aluminum oxide (AAO) via the layer-by-layer (LBL) deposition of polyelectrolytes to date to yield free-standing, open nanotubes with inner and outer diameters (±2σ) down to 37 ± 4 and 52 ± 19 nm, respectively. This work is based on the fabrication of defined arrays of highly regular nanopores by anodic oxidation of aluminum. Pores with pore diameters between 53 ± 9 and 356 ± 14 nm and interpore distances between 110 ± 3 and 500 ± 17 nm were obtained using an optimized two-step anodization procedure. 3-(Ethoxydimethylsilyl)propylamine-coated pores were replicated by alternating LBL deposition of poly(styrenesulfonate) and poly(allylamine). The detrimental adsorption of polyelectrolyte on the top surface of the template that typically results in partial pore blocking was eliminated by controlling the surface energy of the top surface via deposition of an ultrathin gold layer. The thickness of the deposited LBL multilayer assembly at the pore orifice agreed to within the experimental error with the thicknesses measured by variable angle spectroscopic ellipsometry and atomic force microscopy (AFM) for layers assembled on flat substrates. The selective dissolution of the alumina template afforded free-standing, open polymer nanotubes that were stable without any cross-linking procedure. The nanotubes thus obtained possessed mean outer diameters as small as 52 nm, limited by the size of the AAO template.  相似文献   

12.
This study aims to evidence the influence of polyelectrolytes structure and the number of double layers on the properties of some new nanostructured architectures formed by layer-by-layer self-assembly of complementary weak polyelectrolytes on planar surfaces. For this purpose, we used chitosan and poly(allylamine hydrochloride) as polycations, and poly(acrylic acid) and poly(2-acrylamido-2-methylpropanesulfonic acid–co-acrylic acid) as polyanions. To get a direct image on the polyelectrolyte multilayers formation and properties, gravimetry, infrared spectroscopy, and atomic force microscopy have been used. The capacity of the polyions to overcompensate the complementary polyions charges, and thus to influence the swelling degree in water of thin films, was strongly influenced by the chain structure and flexibility. A special attention was paid to the responsiveness of the new composite materials to the pH of the swelling environment.  相似文献   

13.
Characterization of ultrathin films of different polymer nanoparticles obtained at room temperature via spin-coating of aqueous dispersions and their morphology are described. Very small nanoparticles of semicrystalline 1,2-polybutadiene (PB), noncrystalline poly(1-butene) (PH), and poly(1-butenal) (PHF) were prepared via catalytic emulsion polymerization and subsequent hydrogenation or hydroformylation. The prefabricated nanoparticles were used as building blocks. The thin films obtained are continuous and transparent (n=1.5; κ=0). The properties of these films, formed from different constituents, are analyzed. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images show that the PB-films are very smooth (rms roughness=10 nm) and polycrystalline. Recrystallization of these PB films reveals that edge-on lamellae are the constituent units. Films with very low roughness values (rms roughness <2 nm) are obtained with PH nanoparticles, due to the soft character of the nanoparticles. The AFM profile of the PHF films reveals that the surface remains structured after drying due to the high degree of the internal cross-linking that occurs in the nanoparticles. Quantification of the films' polarity (I(3)/I(1)=0.89, 1.3, and 2.1 for PHF, PB, and PH, respectively) agrees well with the previous values obtained for the polymer dispersions. Surfactant molecules are desorbed during the film formation; however, these aggregates can be removed by rinsing with water with no undesirable effects observed on the films.  相似文献   

14.
Photo-cross-linkable polyelectrolyte multilayers were made from poly(allylamine) (PAH) and poly(acrylic acid) (PAA) modified with a photosensitive benzophenone. Nanoindentation, using atomic force microscopy (AFM) of these and unmodified PAH/PAA multilayers, was used to assess their mechanical properties in situ under an aqueous buffer. Under the conditions employed (and a 20 nm radius AFM tip), reliable nanoindentations that appeared to be decoupled from the properties of the silicon substrate were obtained for films greater than 150 nm in thickness. A strong difference in the apparent modulus was observed for films terminated with positive as compared to negative polyelectrolytes. Films terminated with PAA were more glassy, suggesting better charge matching of polyelectrolytes. Multilayers irradiated for up to 100 min showed a smooth, controlled increase in the modulus with little change in the water contact angle. The permeability to iodide ion, measured electrochemically, also decreased in a controlled fashion.  相似文献   

15.
When gold nanoparticles are covered with nanometric layers of transparent polyelectrolytes, the plasmon absorption spectrum A(λ) increases by a factor of approximately three and shifts to the red. These modifications of dissipative experimental observables stop when the cover layer thickness approaches the particle diameter. Spectral modifications of dispersive parameters like the reflection R, however, keep changing with increasing cover layer thickness. The shift of the plasmon resonance caused by two interacting particle layers is studied as a function of the separating distance between the two layers. We discuss these observations in the context of an effective medium theory and conclude that it can only be applied for a layer thickness on the order of the particle diameter.  相似文献   

16.
In order to elaborate alternate layer-by-layer assembly as a means to prepare ultrathin films, details of conventional polyion assemblies have been quantitatively analyzed by quartz crystal microbalance (QCM) technique with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The alternate adsorption of poly(styrenesulfonate) (PSS) and poly(allylamine) (PAM) onto oppositely-charged surfaces displayed the pseudo first-order kinetics and was saturated within 10–20 min at pH 3 and 22°C. It was revealed that drying at every step increased the thickness of adsorbed films due to enhanced surface roughness of the films. Therefore, frequent drying is not profitable for preparing films in a good quality. Non-contact AFM observation revealed that drying of the film with nitrogen stream, forced polymer chains to align to one direction with increasing surface roughness. In contrast, water washing between the consecutive adsorptions was effective for successful alternate adsorption. About 10% of an adsorbed polyion layer was removed by 5-min water washing probably due to removal of the loosely-attached materials.  相似文献   

17.
Polyelectrolyte shells of nanocomposite microcapsules containing colloidal gold nanoparticles of different diameters (5, 10, or 20 nm) are formed by the polyion assembly procedure. Microcapsules with different numbers of layers and structures are studied by transmission electron microscopy, atomic force microscopy, and confocal microscopy. The values of the thickness and roughness of microcapsule shells are determined and the dependence of these parameters on the size of gold nanoparticles constituting shells is investigated. It is established that the concentration of nanoparticles in polyelectrolyte shells of microcapsules decreases with an increase in particle diameter.  相似文献   

18.
Macrophages are one of the principal immune effector cells that play essential roles as secretory, phagocytic, and antigen-presenting cells in the immune system. In this study, we address the issue of cytotoxicity and immunogenic effects of gold nanoparticles on RAW264.7 macrophage cells. The cytotoxicity of gold nanoparticles has been correlated with a detailed study of their endocytotic uptake using various microscopy tools such as atomic force microscopy (AFM), confocal-laser-scanning microscopy (CFLSM), and transmission electron microscopy (TEM). Our findings suggest that Au(0) nanoparticles are not cytotoxic, reduce the production of reactive oxygen and nitrite species, and do not elicit secretion of proinflammatory cytokines TNF-alpha and IL1-beta, making them suitable candidates for nanomedicine. AFM measurements suggest that gold nanoparticles are internalized inside the cell via a mechanism involving pinocytosis, while CFLSM and TEM studies indicate their internalization in lysosomal bodies arranged in perinuclear fashion. Our studies thus underline the noncytotoxic, nonimmunogenic, and biocompatible properties of gold nanoparticles with the potential for application in nanoimmunology, nanomedicine, and nanobiotechnology.  相似文献   

19.
We demonstrate that the surface morphology and surface-wetting behavior of layer-by-layer (LbL) films can be controlled using different deposition methods. Multilayer films based upon hydrogen-bonding interactions between hydrophobically modified poly(ethylene oxide) (HM-PEO) and poly(acrylic acid) (PAA) have been prepared using the dip- and spin-assisted LbL methods. A three-dimensional surface structure in the dip-assisted multilayer films appeared above a critical number of layer pairs owing to the formation of micelles of HM-PEO in its aqueous dipping solution. In the case of spin-assisted HM-PEO/PAA multilayer films, no such surface morphology development was observed, regardless of the layer pair number, owing to the limited rearrangement and aggregation of HM-PEO micelles during spin deposition. The contrasting surface morphologies of the dip- and spin-assisted LbL films have a remarkable effect on the wetting behavior of water droplets. The water contact angle of the dip-assisted HM-PEO/PAA LbL films reaches a maximum at an intermediate layer pair number, coinciding with the critical number of layer pairs for surface morphology development, and then decreases rapidly as the surface structure is evolved and amplified. In contrast, spin-assisted HM-PEO/PAA LbL films yield a nearly constant water contact angle due to the surface chemical composition and roughness that is uniform independent of layer pair number. We also demonstrate that the multilayer samples prepared using both the dip- and spin-assisted LbL methods were easily peeled away from any type of substrate to yield free-standing films; spin-assisted LbL films appeared transparent, while dip-assisted LbL films were translucent.  相似文献   

20.
Water-dispersible selenium nanoparticles (SeNPs) were created by using natural hyperbranched polysaccharide (HBP) as the stabilizer and capping agent under extremely safe conditions. The structure, morphology, size, and stability of the nanocomposites were investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and static and dynamic light scattering (DLS) measurements. The results revealed that the spherical selenium nanoparticles (mean particle size of about 24 nm) were ligated with HBP to form nanocomposites (Se-HBP) in aqueous solution and were stable for over one month. In our findings, supported by the results of FTIR, TEM, AFM, and DLS, SeNPs were capped with the HBP macromolecules, as a result of strong physical adsorption of OH groups on Se surfaces, leading to a highly stable structure of Se nanoparticles in water. This work provided reaction sites for the complexation between HBP and Se to fabricate well-dispersed Se nanoparticles in aqueous system with potential bioapplications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号