首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we develop a nonconforming mixed finite element method to solve Biot's consolidation model. In particular, this work has been motivated to overcome nonphysical oscillations in the pressure variable, which is known as locking in poroelasticity. The method is based on a coupling of a nonconforming finite element method for the displacement of the solid phase with a standard mixed finite element method for the pressure and velocity of the fluid phase. The discrete Korn's inequality has been achieved by adding a jump term to the discrete variational formulation. We prove a rigorous proof of a‐priori error estimates for both semidiscrete and fully‐discrete schemes. Optimal error estimates have been derived. In particular, optimality in the pressure, measured in different norms, has been proved for both cases when the constrained specific storage coefficient c0 is strictly positive and when c0 is nonnegative. Numerical results illustrate the accuracy of the method and also show the effectiveness of the method to overcome the nonphysical pressure oscillations. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
A new numerical method for computing the divergence-free part of the solution of the time-harmonic Maxwell equations is studied in this paper. It is based on a discretization that uses the locally divergence-free Crouzeix-Raviart nonconforming vector fields and includes a consistency term involving the jumps of the vector fields across element boundaries. Optimal convergence rates (up to an arbitrary positive ) in both the energy norm and the norm are established on graded meshes. The theoretical results are confirmed by numerical experiments.

  相似文献   


3.

Computable a posteriori error bounds and related adaptive mesh-refining algorithms are provided for the numerical treatment of monotone stationary flow problems with a quite general class of conforming and nonconforming finite element methods. A refined residual-based error estimate generalises the works of Verfürth; Dari, Duran and Padra; Bao and Barrett. As a consequence, reliable and efficient averaging estimates can be established on unstructured grids. The symmetric formulation of the incompressible flow problem models certain nonNewtonian flow problems and the Stokes problem with mixed boundary conditions. A Helmholtz decomposition avoids any regularity or saturation assumption in the mathematical error analysis. Numerical experiments for the partly nonconforming method analysed by Kouhia and Stenberg indicate efficiency of related adaptive mesh-refining algorithms.

  相似文献   


4.
In this paper we analyze the finite element discretization for the first-order system least squares mixed model for the second-order elliptic problem by means of using nonconforming and conforming elements to approximate displacement and stress, respectively. Moreover, on arbitrary regular quadrilaterals, we propose new variants of both the rotated nonconforming element and the lowest-order Raviart-Thomas element.

  相似文献   


5.
A posteriori error estimate for the mixed finite element method   总被引:6,自引:0,他引:6  
A computable error bound for mixed finite element methods is established in the model case of the Poisson-problem to control the error in the H(div,) -norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart-Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-Marini elements.

  相似文献   


6.
In this paper, a new numerical method is proposed and analyzed for the Allen–Cahn (AC) equation. We divide the AC equation into linear section and nonlinear section based on the idea of operator splitting. For the linear part, it is discretized by using the Crank–Nicolson scheme and solved by finite element method. The nonlinear part is solved accurately. In addition, a posteriori error estimator of AC equation is constructed in adaptive computation based on superconvergent cluster recovery. According to the proposed a posteriori error estimator, we design an adaptive algorithm for the AC equation. Numerical examples are also presented to illustrate the effectiveness of our adaptive procedure.  相似文献   

7.
We obtain a computable a posteriori error bound on the broken energy norm of the error in the Fortin-Soulie finite element approximation of a linear second order elliptic problem with variable permeability. This bound is shown to be efficient in the sense that it also provides a lower bound for the broken energy norm of the error up to a constant and higher order data oscillation terms. The estimator is completely free of unknown constants and provides a guaranteed numerical bound on the error.

  相似文献   


8.
All first-order averaging or gradient-recovery operators for lowest-order finite element methods are shown to allow for an efficient a posteriori error estimation in an isotropic, elliptic model problem in a bounded Lipschitz domain in . Given a piecewise constant discrete flux (that is the gradient of a discrete displacement) as an approximation to the unknown exact flux (that is the gradient of the exact displacement), recent results verify efficiency and reliability of


in the sense that is a lower and upper bound of the flux error up to multiplicative constants and higher-order terms. The averaging space consists of piecewise polynomial and globally continuous finite element functions in components with carefully designed boundary conditions. The minimal value is frequently replaced by some averaging operator applied within a simple post-processing to . The result provides a reliable error bound with .

This paper establishes and so equivalence of and . This implies efficiency of for a large class of patchwise averaging techniques which includes the ZZ-gradient-recovery technique. The bound established for tetrahedral finite elements appears striking in that the shape of the elements does not enter: The equivalence is robust with respect to anisotropic meshes. The main arguments in the proof are Ascoli's lemma, a strengthened Cauchy inequality, and elementary calculations with mass matrices.

  相似文献   


9.
This paper presents the comparison of physical spline finite element method (PSFEM), in which differential equations are incorporated into interpolations of basic elements, with least-squares finite element method (LSFEM) and mixed Galerkin finite element method (MGFEM) on the numerical solution of one dimensional Helmholtz equation applied to an acoustic scattering problem. Firstly, all three methods are explained in detail and then it is shown that PSFEM reaches higher precision in a shorter time with fewer nodes than the other methods. It is also observed that this method is well suited for high frequency acoustic problems. Consequently, the results of PSFEM point out better efficiency in terms of number of unknowns and accuracy level.  相似文献   

10.
The superconvergence for a nonconforming mixed finite element approximation of the Navier–Stokes equations is analyzed in this article. The velocity field is approximated by the constrained nonconforming rotated Q1 (CNRQ1) element, and the pressure is approximated by the piecewise constant functions. Under some regularity assumptions, the superconvergence estimates for both the velocity in broken H1‐norm and the pressure in L2‐norm are obtained. Some numerical examples are presented to demonstrate our theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 646–660, 2016  相似文献   

11.
This paper presents a general method to associate the operator splitting for the Peaceman—Rachford procedure with a decomposition of the domain in problems arising from finite element discretization of partial differential equations. The algorithm is provably convergent without any symmetry requirement. Moreover, this method possesses the significant advantage of making the linear systems of the Peaceman—Rachford iteration block diagonal and therefore perfectly appropriate for parallel processing. Not only is sparsity not affected but a reduction of the bandwidth occurs. In fact, for appropriate choices of nonconforming finite element spaces, this method makes directly possible elementwise processing. This option remains available in general for higher-dimensional problems by applying the splitting algorithm recursively. Practical implementation requires nothing more than the standard finite element assembly procedure and some bookkeeping to relate a few different orderings of the nodes. In addition to all these attractive features, the method is rapidly convergent and remains highly competitive even when used on a serial machine.  相似文献   

12.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007  相似文献   

13.
We apply the least‐squares finite element method with adaptive grid to nonlinear time‐dependent PDEs with shocks. The least‐squares finite element method is also used in applying the deformation method to generate the adaptive moving grids. The effectiveness of this method is demonstrated by solving a Burgers' equation with shocks. Computational results on uniform grids and adaptive grids are compared for the purpose of evaluation. The results show that the adaptive grids can capture the shock more sharply with significantly less computational time. For moving shock, the adaptive grid moves correctly with the shock. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
在半离散格式下.研究了Stokes型积分一微分方程的Crouzeix-Raviart型非协调三角形各向异性有限元方法,在不需要传统Ritz-Volterra投影下,通过辅助空间等新的技巧得到了与传统有限元方法相同的误差估计.  相似文献   

15.
In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.  相似文献   

16.
We prove a priori estimates and optimal error estimates for linear finite element approximations of elliptic systems in divergence form with continuous coefficients in Campanato spaces. The proofs rely on discrete analogues of the Campanato inequalities for the solution of the system, which locally measure the decay of the energy. As an application of our results we derive -estimates and give a new proof of the well-known -results of Rannacher and Scott.

  相似文献   


17.
We prove the homotopy invariance of torsion for covering spaces, whenever the covering transformation group is either residually finite or amenable. In the case when the covering transformation group is residually finite and when the cohomology of the covering space vanishes, the homotopy invariance was established by Lück. We also give some applications of our results.

  相似文献   


18.
1. IntroductionLet fi be a unit sqllare domain in the ac-plane and Th = {eij}:j71 be a rectangularpartition of the domain .fi, where us m are two positive illtegers, eij ~ [xi-1 ) xi] x [yi-1, yi]are rectagular elements, and0~ xo < al < ..' < xu = 1, 0 = yo < yi < ... < ac = 1are two one-dimensional partitions on the x-axis and yials, respectively. Define hi =xi - fi-h hi = yi - ie-l, and the mesh size h = ma-c{hi, hi}::,. As usual, Th is said tobe quasi-uniform if there exists a constant c s…  相似文献   

19.
The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value prob-lem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L2-norms are independent of the Lame parameterλ.  相似文献   

20.
In this paper an anisotropic interpolation theorem is presentedthat can be easily used to check the anisotropy of an element.A kind of quasi-Wilson element is considered for second-orderproblems on narrow quadrilateral meshes for which the usualregularity condition K/hK c0 > 0 is not satisfied, wherehK is the diameter of the element K and K is the radius of thelargest inscribed circle in K. Anisotropic error estimates ofthe interpolation error and the consistency error in the energynorm and the L2-norm are given. Furthermore, we give a Poincaréinequality on a trapezoid which improves a result of eniek.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号