首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
超静定梁的挠曲线初参数方程   总被引:2,自引:0,他引:2  
本文建立了超静定梁的挠曲线初参数方程,利用超静定梁的边界条件和支座处的约束条件以及静力学平衡条件定出了方程中的所有未知参数.可通过研究梁的初参数方程,求出整个梁中挠度,转角的最大值.  相似文献   

2.
"超静定梁的塑性极限分析" 作为塑性力学教材中的一节内容,阐述了如何用"机动法" 和"静力法" 求最终的塑性极限破坏载荷,却没有分析超静定梁的弹塑性加载变形过程. 通过把结构力学中计算弹性位移的单位载荷法扩展应用到超静定梁的弹塑性加载过程,以均布载荷作用下两端固支超静定梁的弹塑性加载和变形全过程分析为例,构建了超静定梁弹塑性加载过程分析的教学内容,给出了两端固支超静定梁在均布载荷加载过程中弯矩内力和挠度随外载荷而变化的解析公式. 主要目的是引导学生掌握超静定梁复杂的非线性弹塑性加载变形全过程的分析方法,可供塑性力学教材改编时参考引用.  相似文献   

3.
对“用位移法计算超静定结构”论述的商榷徐昌文(上海建筑材料工业学院,上海200434)综观《结构力学》各种教材,一般都有如下的论述:力法和位移法是计算超静定结构的两个基本方法.用位移法解超静定结构是取结点位移作为基本未知量,以单跨超静定梁的组合体作为...  相似文献   

4.
讨论了分析超静定连续梁弹塑性受力和变形全过程的单位荷载法,运用该方法分析了集中荷载作用下一次超静定两跨连续梁的弹塑性加载和变形全过程.根据受力变形的特点,集中荷载作用下两跨连续梁的弹塑性加载过程可分为四个阶段,分别是弹性阶段、集中荷载作用点附近塑性区扩展阶段、集中荷载作用点保持为塑性铰而附近区域线性卸载阶段、两跨连接点附近塑性区扩展直至形成第二个塑性铰阶段.给出了加载过程中各阶段的弯矩内力和竖向位移随外荷载而变化的解析公式.研究结果表明:在相同的单跨荷载工况下,连续梁的变形过程不同于单跨一次超静定梁,其塑性铰形成顺序不同,静定结构形成顺序不同,但塑性极限破坏荷载相同.  相似文献   

5.
用强迫力法求解弹性支承梁的固有振动   总被引:1,自引:1,他引:1  
李吉 《力学与实践》1996,18(2):35-36
本文将强迫力法引入弹性支承梁固有振动的计算问题,把具有多个弹性支承的梁按自由粱米处理,而将支承反力看作作用于梁上的强迫力。最后利用各支承点的位移约束条件建立了系统的频率方程和以各支反力为基本未知量的线性方程组.  相似文献   

6.
付超  杨骁 《力学季刊》2018,39(1):90
考虑裂纹的缝隙和黏性效应,将梁中横向裂纹等效为黏弹性扭转弹簧,利用广义Delta函数,给出了Laplace变换域内裂纹梁的等效抗弯刚度,得到了具有任意开闭裂纹数目且满足标准线性固体黏弹性本构的Timoshenko梁在时间域内的弯曲变形显式解析通解.在此基础上,通过两个数值算例,分析了时间、梁跨高比和裂纹深度等参数对黏弹性Timoshenko开裂纹梁弯曲变形的影响.结果表明:裂纹黏性对Timoshenko裂纹梁的弯曲具有显著的影响.相比于裂纹的弹性扭转弹簧模型,考虑裂纹黏性效应的黏弹性Timoshenko裂纹梁在裂纹处挠度尖点和转角跳跃现象十分明显.另外,由于横向剪切引起的附加变形,Timoshenko裂纹梁的稳态挠度与Euler-Bernoulli梁挠度的差值为常数,其大小与裂纹模型、梁跨高比或裂纹深度无关,这些结果对梁裂纹无损检测具有指导意义.  相似文献   

7.
现有结构力学教材中, 一般只给出沿梁截面高度方向线性分布温度变化时的 载常数. 而工程上更常见的是非线性分布的温度变化. 本文根据弹性理论首先推出了静定梁 在温度变化作用下的杆端位移. 在此基础上, 用力法导出了单跨超静定梁在非线性温度作用 下的载常数, 并给出了温度沿截面高度按照指数规律变化时的杆端力, 可供混凝土梁设计参 考.  相似文献   

8.
????? 《力学与实践》2007,29(2):67-67
推导了超静定梁变形计算的有限差分方程,研究了边界条件,编制了计算程序,计算 了超静定梁的变形. 文中工作扩大了有限差分法的应用范围.  相似文献   

9.
超静定梁的弹塑性分析   总被引:9,自引:0,他引:9  
 通过虚功原理和单位载荷法分析了超静定梁的弹塑性加载过程,给出了加载过程中外 载荷与约束反力的非线性关系,并据此对塑性力学中超静定梁的塑性极限分析的编写提出了 建议.  相似文献   

10.
本文将高速车辆轮对按弹性梁简化,解析推导了弹性梁在有弹性约束条件下的振型函数及频率方程.解释了弹性梁的低阶弹性振动频率和振型与边界约束刚度有关,同时引用弹性梁频率方程的数值解及轮对模态试验结果予以证实.  相似文献   

11.
本文在梁的整体屈曲分析中,废除了传统的刚性截面假定(刚周边假定),允许梁截面自由地歪曲,进而研究了薄壁截面梁的歪曲屈曲性能。分析中采用了样条有限条法,考虑了各种不同的荷载形式、支承条件和边界约束。这一方法与有限元法相比较,计算工作量大大地减少。数值计算结果表明,在梁长细比的较大范围内,歪曲屈曲模型对梁的设计起控制作用。  相似文献   

12.
The main objective of this paper is to apply an Adomian modified decomposition method for solving large amplitude vibration analysis of stepped beams with various general and elastic boundary conditions. Damaged or imperfect supports of beams can be modeled by using elastic boundary conditions composing of translational and rotational springs. For the beams subjected to dynamic severe loading, it is important to include the nonlinear term of axial stretching force developed by the large vibration amplitude in the governing equation for more accurate design. By using the method, the convergence studies for linear and nonlinear vibration analyses of stepped beams are shown for determining an appropriate number of terms in the solutions. The accuracy of the present results is validated numerically by comparing with some available results in the literature. New results of nonlinear frequency ratios of stepped beams with different boundary conditions are presented and discussed in detail. Aspects of step ratio, step location, boundary conditions, vibration amplitudes, etc., which have significant impact on linear and nonlinear frequencies of such beams are taken under investigation.  相似文献   

13.
Based on geometrically non-linear theory for extensible elastic beams, governing equations of statically post-buckling of a beam with one end hinged and the other fixed, subjected to a uniformly distributed, tangentially compressing follower forces are established. They consist of a boundary-value problem of ordinary differential equations with a strong non-linearity, in which seven unknown functions are contained and the arc length of the deformed axis is considered as one of the basic unknown functions. By using shooting method and in conjunction with analytical continuation, the non-linear governing equations are solved numerically and the equilibrium paths as well as the post-buckled configurations of the deformed beam are presented. A comparison between the results of conservative system and that of the non-conservative systems are given. The results show that the features of the equilibrium paths of the beams under follower loads are evidently different from that under conservative ones.  相似文献   

14.
The aeroelastic stability of rotating beams with elastic restraints is investigated. The coupled bending-torsional Euler-Bernoulli beam and Timoshenko beam models are adopted for the structural modeling. The Greenberg aerodynamic model is used to describe the unsteady aerodynamic forces. The additional centrifugal stiffness effect and elastic boundary conditions are considered in the form of potential energy. A modified Fourier series method is used to assume the displacement field function and solve the governing equation. The convergence and accuracy of the method are verified by comparison of numerical results. Then, the flutter analysis of the rotating beam structure is carried out, and the critical rotational velocity of the flutter is predicted. The results show that the elastic boundary reduces the critical flutter velocity of the rotating beam, and the elastic range of torsional spring is larger than the elastic range of linear spring.  相似文献   

15.
A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. The example analysis shows that the maximum tensile stress using the same elastic modulus theory is underestimated if the tensile elastic modulus is larger than the compressive elastic modulus. Otherwise, the maximum compressive stress is underestimated. The maximum tensile stress using the material mechanics solution is underestimated when the tensile elastic modulus is larger than the compressive elastic modulus to a certain extent. The error of stress using the material mechanics theory decreases as the span-to-height ratio of beams increases, which is apparent when L/h ≤5. The error also varies with the distributed load patterns.  相似文献   

16.
黄文彬  曾国平 《力学学报》1991,23(2):172-180
本文对不同刚度、不同长度、不同支承条件的具有对称截面的重叠梁,在任何载荷作用下产生的弯扭变形而引起的接触问题进行了分析,导出了单侧线接触、双侧线接触时的压力分布规律及点接触定理;给出了一个静不定梁算例,当外载变化时将出现单侧接触区、双侧接触区与点接触的复杂情况,而数值计算描述了当外载增长时接触区与反力变化的发展过程。  相似文献   

17.
A method is introduced to identify simultaneously elastic properties and loading fields from a measured displacement field. Since the mechanical behavior of micro-electro-mechanical systems (MEMS) is governed by surface effects, this type of identification tool is thought to be of major interest. However, increasing the number of parameters to retrieve affects the redundancy necessary for an accurate identification. A finite-element formulation of a distance between measured and statically admissible (SA) displacement fields is shown to be equivalent to a standard least-squares distance to kinematically admissible (KA) fields if the used modeling is suitable. Any deviation from this equivalence is then the signature of a modeling error. Balancing the distance to KA and SA displacement fields allows one to retrieve unknown modeling parameters. This method is detailed on heterogeneous Euler–Bernoulli beams submitted to an unknown loading field and applied to experimental displacement fields of micro-cantilevers obtained with an electrostatic set-up. An elastic property field and a parameterized loading field are then identified, and the quality of the identification is assessed.  相似文献   

18.
An analytical method for the treatment of the elastic buckling problem of continuous beams with intermediate unilateral constraints is presented, which is based on the fundamental theory of elastic stability. The study focuses on the unilateral contact buckling problem of beams in the presence of initial geometric imperfections. The mathematical Euler approach, based on the fundamental solution of the boundary value problem of the buckling of continuous beams, is appropriately modified in order to take into account the unilateral contact conditions. Furthermore, in order the obtained analytical solutions to be applicable for practical design cases, the actual strength of the cross-section of the beam under combined compression and bending is considered. The implementation of the proposed method is demonstrated through a characteristic example.  相似文献   

19.
Bending of strain gradient elastic thin beams is studied adopting Bernoulli-Euler principle. Simple linear strain gradient elastic theory with surface energy is employed. The governing beam equations with its boundary conditions are derived through a variational method. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin beams. Those terms are missing from the existing strain gradient beam theories. Those terms increase highly the stiffness of the thin beam. The buckling problem of the thin beams is also discussed.  相似文献   

20.
This paper considers the plane stress problem of generally anisotropic beams with elastic compliance parameters being arbitrary functions of the thickness coordinate. Firstly, the partial differential equation, which is satisfied by the Airy stress function for the plane problem of anisotropic functionally graded materials and involves the effect of body force, is derived. Secondly, a unified method is developed to obtain the stress function. The analytical expressions of axial force, bending moment, shear force and displacements are then deduced through integration. Thirdly, the stress function is employed to solve problems of anisotropic functionally graded plane beams, with the integral constants completely determined from boundary conditions. A series of elasticity solutions are thus obtained, including the solution for beams under tension and pure bending, the solution for cantilever beams subjected to shear force applied at the free end, the solution for cantilever beams or simply supported beams subjected to uniform load, the solution for fixed–fixed beams subjected to uniform load, and the one for beams subjected to body force, etc. These solutions can be easily degenerated into the elasticity solutions for homogeneous beams. Some of them are absolutely new to literature, and some coincide with the available solutions. It is also found that there are certain errors in several available solutions. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a functionally graded anisotropic cantilever beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号