首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.  相似文献   

2.
Levin D  Soled SL  Ying JY 《Inorganic chemistry》1996,35(14):4191-4197
A layered ammonium nickel molybdate was prepared by precipitation from a solution of nickel nitrate and ammonium heptamolybdate. The compound obtained, (NH(4))HNi(2)(OH)(2)(MoO(4))(2), is trigonal with hexagonal unit cell parameters a = 6.0147(4) ?, c = 21.8812(13) ?, and Z = 3. A powder X-ray diffraction pattern was obtained using synchrotron radiation. The structure was generated from three-dimensional Patterson and difference Fourier density maps and refined in the space group R&thremacr;m by the Rietveld method. The structure consists of molybdate tetrahedra and nickel octahedra forming layers perpendicular to the c axis. There are three layers per unit cell, with ammonium ions incorporated between the layers. The structure is a member of a solid solution series of (NH(4))H(2)(x)()Ni(3)(-)(x)()O(OH)(MoO(4))(2), where 0 相似文献   

3.
We investigated the formation mechanism of thermoelectric [Ca(2)CoO(3)](0.62)[CoO(2)] (CCO) on beta-Co(OH)(2) templates with maintained orientations by identifying the intermediate phases and specifying the relationship between their crystallographic orientations. We mixed beta-Co(OH)(2) templates with the complementary reactant CaCO(3) and prepared a compact by tape casting, with the developed (001) plane of the templates aligned along the casting plane. High-temperature XRD of the compact revealed that beta-Co(OH)(2) decomposed into Co(3)O(4) by 873 K, and Co(3)O(4) reacted with CaO to form CCO by 1193 K via the formation of the newly detected intermediate phase beta-Na(x)()CoO(2)-type Ca(x)()CoO(2) at 913-973 K. Pole figure measurements and SEM and TEM observations revealed that the relationship between the crystallographic planes was (001) beta-Co(OH)(2)//{111} Co(3)O(4)//(001) Ca(x)()CoO(2)//(001) CCO. The crystal structures of the four materials possess the common CoO(2) layer (or similar), which is composed of edge-sharing CoO(6) octahedra, parallel to the planes. The cross-sectional HRTEM analysis of an incompletely reacted specimen showed transient lattice images from Ca(x)()CoO(2) into CCO, in which every other CoO(2) layer of Ca(x)()CoO(2) was preserved. Thus, it was demonstrated that a textured CCO ceramic is produced through a series of in situ topotactic conversion reactions with a preserved CoO(2) layer of its template.  相似文献   

4.
The synthesis, characterization, and reactivity of new polyether adducts of strontium and barium carboxylates of general composition M(O(2)CCF(3))(n)()(L) (M = Ba, L = 15-crown-5, (1); M = Ba (2), Sr (3), respectively, with L = tetraglyme are reported. The compounds were synthesized by reaction of BaCO(3) or MH(2) (M = Sr or Ba) with organic acids in the presence of the polyether ligands. These compounds have been characterized by IR and (13)C and (1)H NMR spectroscopies, elemental analyses, and thermogravimetric analysis. The species Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) and [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2), were also characterized by single-crystal X-ray diffraction. Ba(2)(O(2)CCF(3))(4)(15-crown-5)(2) (1) crystallizes in the orthorhombic space group Cccm with cell dimensions of a = 13.949(1) ?, b = 19.376(2) ?, c = 16.029(1) ?, and Z = 8. [Ba(2)(O(2)CCF(3))(4)(tetraglyme)](infinity) (2) crystallizes in the monoclinic space group C2/c with cell dimensions of a = 12.8673(12) ?, b = 16.6981(13) ?, c = 15.1191(12) ?, beta = 99.049(8) degrees, and Z = 4. Compounds 1-3 thermally decompose at high temperatures in the solid state to give MF(2). However, solutions of compounds 1-3 dissolved in ethanol with Ti(O-i-Pr)(4) give crystalline perovskite phase MTiO(3) films, or in the case of mixtures of 2 and 3, Ba(1)(-)(x)()Sr(x)()TiO(3) films below 600 degrees C when spin coated onto silicon substrates and thermally treated. The crystallinity, purity, and elemental composition of the films was determined by glancing angle X-ray diffraction and Auger electron spectroscopy.  相似文献   

5.
Manganese oxides: parallels between abiotic and biotic structures   总被引:2,自引:0,他引:2  
A large number of microorganisms are responsible for the oxidation of Mn(2+)((aq)) to insoluble Mn(3+/4+) oxides (MnO(x)()) in natural aquatic systems. This paper reports the structure of the biogenic MnO(x)(), including a quantitative analysis of cation vacancies, formed by the freshwater bacterium Leptothrix discophora SP6 (SP6-MnO(x)()). The structure and the morphology of SP6-MnO(x)() were characterized by transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), including full multiple-scattering analysis, and powder X-ray diffraction (XRD). The biogenic precipitate consists of nanoparticles that are approximately 10 nm by 100 nm in dimension with a fibrillar morphology that resembles twisted sheets. The results dem-onstrate that this biogenic MnO(x)() is composed of sheets of edge-sharing of Mn(4+)O(6) octahedra that form layers. The detailed analysis of the EXAFS spectra indicate that 12 +/- 4% of the Mn(4+) layer cation sites in SP6-MnO(x)() are vacant, whereas the analysis of the XANES suggests that the average oxidation state of Mn is 3.8 +/- 0.3. Therefore, the average chemical formula of SP6-MnO(x)() is M(n)()(+)(y)()Mn(3+)(0.12)[ square(0.12)Mn(4+)(0.88)]O(2).zH(2)O, where M(n)()(+)(y)() represents hydrated interlayer cations, square(0.12) represents Mn(4+) cation vacancies within the layer, and Mn(3+)(0.12) represents hydrated cations that occupy sites above/below these cation vacancies.  相似文献   

6.
Todorov I  Sevov SC 《Inorganic chemistry》2005,44(15):5361-5369
The title compounds were synthesized from the elements by heating the corresponding mixtures at high temperature. Their structures were determined from single-crystal X-ray diffraction. Li(9)(-)(x)()EuSn(6+)(x)(), Li(9)(-)(x)()CaSn(6+)(x)(), Li(5)Ca(7)Sn(11), and Li(6)Eu(5)Sn(9) contain columns of stacked aromatic pentagons of Sn(5)(6)(-) that are analogous to the cyclopentadienyl anion C(5)H(5)(-). The pentagons are separated with Ca(2+) or Eu(2+) in the columns and resemble a polymeric metallocene. In addition to the columns, the isostructural Li(9)(-)(x)()EuSn(6+)(x)() and Li(9)(-)(x)()CaSn(6+)(x)() contain isolated tin atoms and bent tin trimers while Li(5)Ca(7)Sn(11) and Li(6)Eu(5)Sn(9) contain flat zigzag hexamers and flat zigzag infinite chains of tin, respectively. The isostructural LiMgEu(2)Sn(3) and LiMgSr(2)Sn(3) do not contain columns of pentagons but only flat zigzag infinite chains of tin. The aromaticity of the pentagons and the conjugation of the pi-systems of the hexamers and the infinite chains are discussed. The title compounds are also characterized by magnetic and conductivity measurements.  相似文献   

7.
Ag/TiO2 core-shell nanowires were synthesized via a one-step solution method without using a template. Interestingly, the shell morphologies can be controlled to be smooth or bristled by altering the reaction temperature. Moreover, the TiO2 shell thickness and bristle length can be tuned by changing the AgNO3 concentration. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the resultant Ag/TiO2 core-shell nanowires. Moreover, the absorption peaks of our samples are significantly red-shifted compared with those of the uncoated pure silver nanowires, indicating that interaction between the core and shell occurred. On the basis of the experimental results, we proposed a template-induced Oswald ripening mechanism to explain the formation of the Ag/TiO2 core-shell nanowires.  相似文献   

8.
The new mercury vanadium phosphate hydrate Hg(4)(-)(x)()O(1)(-)(y)()(VO)(PO(4))(2).H(2)O has been synthesized under hydrothermal conditions. X-ray investigations led to orthorhombic symmetry, space group P2(1)2(1)2(1) (No. 19), a = 6.3632(2) A, b = 12.4155(5) A, c = 14.2292(6) A, Z = 4. The crystal structure was solved and refined from single-crystal diffractometer data to residuals R[F(2) > 2sigmaF(2)] = 0.039, R(w)(F(2)) = 0.055. The VPO framework consists of infinite one-dimensional [VO(PO(4))(2)]( infinity ) chains with corner-connected VO(6) octahedra and PO(4) tetrahedra. The chains run along the [100] direction and are held together by the unprecedented tetrahedral cationic units [Hg(4)(-)(x)()O(1)(-)(y)()](4+). Presence of Hg-Hg bonding contacts is proved from theoretical calculations.  相似文献   

9.
A novel family of metal oxides with a chemical formula of Sr(2)Ce(1-x)Pr(x)O(4) (x = 0, 0.2, 0.5, 0.8, and 1) was developed as mixed oxide ion and electronic conductors for solid oxide fuel cells (SOFCs). All of the investigated samples were synthesized by the ceramic method at 1000 °C in air and characterized by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical impedance spectroscopy (EIS). Ex-situ PXRD reveals that the Sr(2)PbO(4)-type Sr(2)CeO(4) decomposes readily into a mixture of perovskite-type SrCeO(3) and rock-salt-type SrO at 1400 °C in air. Surprisingly, the decomposed products are converted back to the original Sr(2)PbO(4)-type Sr(2)CeO(4) phase at 800 °C in air, as confirmed by in-situ PXRD. Thermal decomposition is highly suppressed in Sr(2)Ce(1-x)Pr(x)O(4) compounds for Pr > 0, suggesting that Pr improves the thermal stability of the compounds. Rietveld analysis of PXRD and SAED supported that both Pr and Ce ions are located on the 2a site in Pbam (space group no. 55). The electrical transport mechanism could be correlated to the reduction of Pr and/or Ce ions and subsequent loss of oxide ions at elevated temperatures, as shown by TGA and in-situ PXRD. Conductivity increases with Pr content in Sr(2)Ce(1-x)Pr(x)O(4). The highest total conductivity of 1.24 × 10(-1) S cm(-1) was observed for Sr(2)Ce(0.2)Pr(0.8)O(4) at 663 °C in air.  相似文献   

10.
Synchrotron-based high-resolution photoemission, X-ray absorption near-edge spectroscopy, and first-principles density functional (DF) slab calculations were used to study the interaction of NO(2) with a TiO(2)(110) single crystal and powders of titania. The main product of the adsorption of NO(2) on TiO(2)(110) is surface nitrate with a small amount of chemisorbed NO(2). A similar result is obtained after the reaction of NO(2) with polycrystalline powders of TiO(2) or other oxide powders. This trend, however, does not imply that the metal centers of the oxides are unreactive toward NO(2). An unexpected mechanism is seen for the formation of NO(3). Photoemission data and DF calculations indicate that the surface nitrate forms through the disproportionation of NO(2) on Ti sites (2NO(2,ads) --> NO(3,ads) + NO(gas)) rather than direct adsorption of NO(2) on O centers of titania. Complex interactions take place between NO(2) and O vacancies of TiO(2)(110). Electronic states associated with O vacancies play a predominant role in the bonding and surface chemistry of NO(2). The adsorbed NO(2), on its part, affects the thermochemical stability of O vacancies, facilitating their migration from the bulk to the surface of titania. The behavior of the NO(2)/titania system illustrates the importance of surface and subsurface defects when using an oxide for trapping or destroying NO(x)() species in the prevention of environmental pollution (DeNOx operations).  相似文献   

11.
The configuration of La ions of La(2)@C(80) in the [80]fullerene cage was investigated by use of quantum chemical calculations. We found that the D(3)(d)() configuration is the global minimum in total energy, being more stable by 1.9 kcal/mol than the D(2)(h)() configuration, which has been considered to be the most stable. The potential energy surface calculation clarified that La ions travel between 10 equivalent D(3)(d)() positions through D(2)(h)() positions and consequently form pentagonal dodecahedral trajectory, which is in good agreement with the previous synchrotron radiation structural study. The experimental and theoretical investigation of the Raman spectrum revealed that the symmetry of molecular vibration is dramatically reduced simply by encapsulation of two La ions, and resulting vibrational modes were successfully assigned. The Raman peak at 163 cm(-)(1) was interpreted as the in-phase synchronously coupled mode of the [80]fullerene cage elongation and the La-La stretching, rather than a conventional and naive assignment as a metal-to-cage vibration mode.  相似文献   

12.
In the course of our investigation aimed at the preparation of homochiral coordination polymers using readily available in optically pure form ligands and building blocks of condensed metal polyhedra, we recently reported a one-dimensional nickel aspartate compound [Ni(2)O(l-Asp)(H(2)O)(2)].4H(2)O (1) based on helical chains with extended Ni-O-Ni bonding. Here we report a new nickel aspartate [Ni(2.5)(OH)(l-Asp)(2)].6.55H(2)O (2) with a three-dimensional Ni-O-Ni connectivity that forms at a higher pH and is based on the same helices as in 1 which are connected by additional nickel octahedra to generate a chiral open framework with one-dimensional channels with minimum van der Waals dimensions of 8 x 5 A. The crystal structure of 2 was determined by synchrotron single-crystal X-ray diffraction on a 10 x 10 x 240 microm crystal.  相似文献   

13.
Silver nanowires have been synthesized by ethylene glycol reduction of silver nitrate with the assistance of polyvinyl pyrrolidone and sodium sulfide in a large scale. By adjusting the reaction temperature and Na2S content, silver nanowires with lengths up to 3?4 μm can be achieved in high yield. Scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected areas electron diffraction (SAED), and X-ray diffraction (XRD) have been employed to characterize silver nanowires. Platinum nanotubes with length about 3 μm can be prepared using as-prepared silver nanowires as sacrificial templates. Platinum nanotubes were characterized by TEM, SAED, and HRTEM.  相似文献   

14.
Du Y  Pan Q  Li J  Yu J  Xu R 《Inorganic chemistry》2007,46(15):5847-5851
A new layered zirconium phosphate |Co(dien)(2)|[Zr(4)H(8)P(5)O(26)] x 3H(2)O (denoted ZrPO-CJ37) has been synthesized hydrothermally by using a racemic mixture of a chiral cobaltammine complex Co(dien)(2)Cl(3) as the template. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, inductively coupled plasma, thermogravimetric, UV-vis, and photoluminescence analyses. The inorganic layer of ZrPO-CJ37 is built up from the linkage of Zr-centered octahedra and P-centered tetrahedra via vertex oxygen atoms forming a 4.6-net sheet. Its structure features the edge-sharing chains of Zr(OM)(6) (M = P, H) octahedra. The cobaltammine complex cations are located in the interlayer region and interact with the host network through H bonds. ZrPO-CJ37 exhibits interesting photoluminescence in the UV-vis spectral region. The edge-sharing chains of Zr(OM)(6) octahedra in the inorganic layer might be responsible for this unusual photoluminescence.  相似文献   

15.
Wang X  Wang Y  Liu Q  Li Y  Yu J  Xu R 《Inorganic chemistry》2012,51(8):4779-4783
A family of novel 2D-layered lanthanide germanates K(3)[Tb(x)Eu(1-x)Ge(3)O(8)(OH)(2)] (x = 1, 0.88, 0.67, 0; denoted as TbGeO-JU-87, Tb(0.88)Eu(0.12)GeO-JU-87, Tb(0.67)Eu(0.33)GeO-JU-87, and EuGeO-JU-87) were synthesized under mild hydrothermal conditions in a concentrated gel system. They are isostructural, as confirmed by the powder X-ray diffraction analysis. The single-crystal X-ray diffraction analysis of EuGeO-JU-87 reveals that it is a 2D-layered [EuGe(3)O(8)(OH)(2)](n)(3n-) anionic framework, which is built up from GeO(4)H/GeO(4) tetrahedra and EuO(6) octahedra by sharing vertex O atoms. Charge neutrality is achieved by K(+) ions located in the free void space. Interestingly, photoluminescence studies show that Tb(0.88)Eu(0.12)GeO-JU-87 and Tb(0.67)Eu(0.33)GeO-JU-87 exhibit a high Tb(3+)-to-Eu(3+) energy-transfer efficiency and the Tb(x)Eu(1-x)GeO-JU-87 system displays tunable photoluminescent properties.  相似文献   

16.
谭乃迪  张延林  陈峰  陈哲 《无机化学学报》2012,28(10):2241-2247
采用简单的溶剂热法制备出高纯度的由纳米片自组装而形成的碲化铋微米结构。在碲化铋的形成中,乙二醇不仅作为溶剂,而且还作为还原剂。研究发现,聚乙烯吡咯烷酮(PVP)和硝酸在碲化铋的形成中起到了很重要的作用。通过X-射线衍射(XRD)、X-射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、选区电子衍射(SAED)对其进行表征及研究。最后,利用时间演化实验对碲化铋的形成机理进行了探讨。  相似文献   

17.
Complex metal arsenates of the stoichiometry M(1)(-)(x)()M'(6)(OH)(3)(AsO(4)H(2)(x)()(/3))(3)(HAsO(4)), M = M' = Co, Ni, have been synthesized under hydrothermal conditions. The two compounds display a very similar structural topology to that of the mineral dumortierite, an uncommon complex oxyborosilicate of aluminum. The hybrid structures consist of well separated, vacancy interrupted chains of face sharing MO(6) octahedra, with short M.M distances near 2.5 A, embedded in a metalloarsenate 3D framework having the topology of the aluminosilicate cancrinite. The framework also contains a quadruply bridging hydroxide ion. Magnetic susceptibility measurements reveal a strong antiferromagnetic interaction and magnetic transition to low temperature spin canted phases below 51 K (Co) and 42 K (Ni). The material may be considered as a zeotype framework structure templated by an interrupted one-dimensional metal oxide.  相似文献   

18.
The reaction of [UI(3)(THF)(4)] with 1 equiv of KTp()i(Pr)()2 in toluene in the presence of several neutral coligands allowed the synthesis of a novel family of mono-Tp()i(Pr)()2 complexes, [UI(2)Tp()i(Pr)()2(L)(x)()] [L = OPPh(3), x = 1 (3); L = C(5)H(5)N, x = 2 (4); L = Hpz()t(Bu,Me), x = 2 (5); and L = bipy, x = 1 (6)]. The adduct with THF, [UI(2)Tp()i(Pr)()2(THF)(2)(-)(3)] (1), could also be isolated by reacting [UI(3)(THF)(4)] with 1 equiv of KTp()i(Pr)()2 in tetrahydrofuran. However, complex 1 is not a good starting material to enter into the mono-Tp()i(Pr)()2 U(III) complexes as it decomposes in solution, leading to mixtures of U(III) species coordinated with Hpz()i(Pr)()2. The solid-state structures of 3, 4, and 6 were determined by single-crystal X-ray diffraction and revealed that this family of mono-Tp()i(Pr)()2 complexes can be six- (3) or seven-coordinated (4 and 6), depending on the nature of the neutral coligand. Complex 3 displays distorted octahedral coordination geometry, while 4 and 6 display distorted pentagonal bipyramid and capped octahedral geometries, respectively. Complexes 3 and 6 are static in solution, and the patterns of the (1)H NMR spectra are consistent with the C(s)() symmetry found in the solid state. The other complexes (1, 4, and 5) are fluxional, but the dynamic processes involved can be slowed by decreasing the temperature.  相似文献   

19.
The crystal structures of the three high-temperature polymorphs of K(3)AlF(6) have been solved from neutron powder diffraction, synchrotron X-ray powder diffraction, and electron diffraction data. The β-phase (stable between 132 and 153 °C) and γ-phase (stable between 153 to 306 °C) can be described as unusually complex superstructures of the double-perovskite structure (K(2)KAlF(6)) which result from noncooperative tilting of the AlF(6) octahedra. The β-phase is tetragonal, space group I4/m, with lattice parameters of a = 13.3862(5) ? and c = 8.5617(3) ? (at 143 °C) and Z = 10. In this phase, one-fifth of the AlF(6) octahedra are rotated about the c-axis by ~45° while the other four-fifths remain untilted. The large ~45° rotations result in edge sharing between these AlF(6) octahedra and the neighboring K-centered polyhedra, resulting in pentagonal bipyramidal coordination for four-fifths of the K(+) ions that reside on the B-sites of the perovskite structure. The remaining one-fifth of the K(+) ions on the B-sites retain octahedral coordination. The γ-phase is orthorhombic, space group Fddd, with lattice parameters of a = 36.1276(4) ?, b = 17.1133(2) ?, and c = 12.0562(1) ? (at 225 °C) and Z = 48. In the γ-phase, one-sixth of the AlF(6) octahedra are randomly rotated about one of two directions by ~45° while the other five-sixths remain essentially untilted. These rotations result in two-thirds of the K(+) ions on the B-site obtaining 7-fold coordination while the other one-third remain in octahedral coordination. The δ-phase adopts the ideal cubic double-perovskite structure, space group Fm ?3m, with a = 8.5943(1) ? at 400 °C. However, pair distribution function analysis shows that locally the δ-phase is quite different from its long-range average crystal structure. The AlF(6) octahedra undergo large-amplitude rotations which are accompanied by off-center displacements of the K(+) ions that occupy the 12-coordinate A-sites.  相似文献   

20.
X-band single-crystal and powder EPR data were collected in the temperature range 4.2-300 K and under hydrostatic pressure up to 500 MPa for [(C(6)H(5))(3)(n-propyl)P](2)Cu(2)Cl(6) (C(42)H(44)P(2)Cu(2)Cl(6)). The crystal and molecular structure have been determined from X-ray diffraction. The compound crystallizes in the monoclinic space group P2(1)/n (Z = 2) and have unit cell dimensions of a = 9.556(5) ?, b= 17.113(3) ?, c = 13.523(7) ?, and beta = 96.10(4) degrees. The structure consists of two controsymmetric Cu(2)Cl(6)(2)(-) dimers well separated by complex anions. EPR spectra are typical for the triplet S = 1 state of Cu(2)Cl(6)(2)(-) dimer with parameters g(x)() = 2.114(8), g(y)() = 2.095(8), g(z)() = 2.300(8), and D(x)() = 0.025(1) cm(-)(1), D(y)() = 0.057(1) cm(-)(1), and D(z)() = -0.082(1) cm(-)(1) at room temperature. The D tensor is dominated by a contribution from anisotropic exchange but the dipole-dipole Cu-Cu coupling is not much less. The anisotropic exchange integrals were estimated to be as follows: J(xy,x)()()2(-)(y)()()2(an) = -45 cm(-)(1), J(xy,xy)()(an) = +17 cm(-)(1), J(xy,yz)()(an) = +62 cm(-)(1). The D tensor components are strongly temperature dependent and linearly increase on cooling with an anomalous nonlinear behavior below 100 K. The D values increase linearly with pressure, but the effect is much smaller than the temperature effect. This suggests that the D vs T dependence is dynamical in origin. EPR data, a possible mechanism, and contributions to the observed dependences are discussed and compared to EPR results for similar compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号