首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed a technique for the site-selective electroless deposition of Cu on poly(ethylene terephthalate) (PET) substrate modified with an organic self-assembled monolayer (SAM). The PET substrate was first modified with a silica-like layer by being dip-coated in an acetone solution of 3-aminopropyltrimethoxysilane and treated with UV light. The PET substrate was further modified with thiol groups using a 3-mercaptopropyltrimethoxysilane-SAM and then irradiated by UV light through a photomask to prepare thiol-group regions and OH-group regions. Cu was then deposited on only the thiol-group regions of the substrate by electroless deposition in a neutral solution with no catalysts by using dimethylamineborane as a reducing reagent. This site-selective deposition process can control the deposition conditions by an organic thin film fabricated on a surface-modified PET substrate, and thus can be applied to other low heat-resistant substrates.  相似文献   

2.
Inclusion of a polymer cushion between a lipid bilayer membrane and a solid surface has been suggested as a means to provide a soft, deformable layer that will allow for transmembrane protein insertion and mobility. In this study, mobile, tethered lipid bilayers were formed on a poly(ethylene glycol) (PEG) support via a two-step adsorption process. The PEG films were prepared by coadsorbing a heterofunctional, telechelic PEG lipopolymer (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-(pyridyldithio)propionate]) (DSPE-PEG-PDP) and a nonlipid functionalized PEG-PDP from an ethanol/water mixture, as described in a previous paper (Munro, J. C.; Frank, C. W. Langmuir 2004, 20, 3339-3349). Then a two-step lipid adsorption strategy was used. First, lipids were adsorbed onto the PEG support from a hexane solution. Second, vesicles were adsorbed and fused on the surface to create a bilayer in an aqueous environment. Fluorescence recovery after photobleaching experiments show that this process results in mobile bilayers with diffusion coefficients on the order of 2 microm2/s. The mobility of the bilayers is decreased slightly by increasing the density of tethered lipids. The formation of bilayers, and not multilayer structures, is also confirmed by surface plasmon resonance, which was used to determine in situ film thickness, and by fluorimetry, which was used to determine quantitatively the fluorescence intensity for each 18 by 18 mm sample. Unfortunately, fluorescence microscopy also shows that there are large defects on the samples, which limits the utility of this system.  相似文献   

3.
Platelet graphite nanofibers (PGNFs) were synthesized by in situ thermal decomposition from a mixture containing poly(ethylene glycol) (PEG) serving as the carbon source and nickel chloride (NiCl(2)) serving as the catalytic precursor. The mixture was conducted by thermal treatment under a nitrogen atmosphere at 750 degrees C and results found PGNFs with high purity and a uniform diameter distribution formed without hydrocarbon gases in the process. Observations using field-emission scanning electron microscopy and high-resolution transmission electron microscopy revealed PGNFs with a high degree of graphitization, well-ordered graphene layers, and uniform diameters of 10-20 nm. Thermogravimetry-differential scanning calorimetry-mass spectrometry was employed to study the thermal decomposition phenomena of the mixture (PEG/NiCl(2)) before the thermal process. The analysis clarified the in situ synthesis growth mechanism of PGNFs from the mixture.  相似文献   

4.
The artificial assembly of enzymes is of considerable interest in basic research fordevelopment of enzyme engineering as well as for technological applications.Since 1991, the molecular deposition developed by Decher and others has been aversatile method for the protein and enZyme molecules self.assembly as a noveltechnique of immobilized enZyme. The glucose isomerase and the bienZymes of glucoseoxidase and glucoamylase were assembled using molecular deposition on the surface ofthe canonized …  相似文献   

5.
Here, we report a study of the morphology and growth dynamics of a self-assembled monolayer (SAM) of the amide containing poly(ethylene glycol) (PEG) thiol (CH3O(CH2CH2O)17NHCO(CH2)2SH) on atomically flat Au(111) surfaces. SAM growth from a 20 muM ethanolic solution reveals island growth through three distinct steps: island nucleation, island growth, and coalescence. The coalescence-step, filling voids in the SAM, is by far slowest. The fine structure study reveals dendritic island formation, an observation which can be explained by attractive intermolecular interactions and surface diffusion-limited aggregation. We have also observed a change in the island height, which peaks during the island growth phase. This height change can be associated with a molecular conformational transition.  相似文献   

6.
4-amino-2-phenyl, 6(p-fluor-phenyl)-5-carbonitrile-pyrimidine (APCP) is a new derivative of pyrimidine with low solubility in water and anti-inflammatory properties. We compared the interfacial behaviors of spread films of poly(ethylene glycol)-grafted phospholipid (DSPE-PEG2000), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and APCP and a mixture of these molecules. The surface pressure–area (Π–A) isotherm showed that APCP and DSPE-PEG2000 molecules were stable at the air/water interface and could be evenly inserted into a DPPC floating monolayer. The introduction of APCP into the DPPC/(DSPE-PEG2000) binary monolayer generally causes an overall increase in surface potential. Analyses of distance variation between the grafted sites are associated with a change of mushroom to brush conformation and this behavior is observed for the DPPC/(DSPE-PEG2000) and DPPC/(DSPE-PEG2000)/APCP monolayers. Langmuir–Blodgett (LB) films of molecules of biological interest were transferred onto mica in order to investigate their interaction. AFM images do not show any regular shape or size and are randomly distributed.  相似文献   

7.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

8.
A modified poly(ethylene glycol) (PEG) has been developed for the soluble-polymer-supported synthesis of beta-lactams. The monomethylether of PEG (MeOPEG) with an average M(W) of 5000 was used as the support, a 4-(3-propyl)phenyl residue as the spacer, and a 4-oxyphenylamino group as the moiety with the reactive functionality. From this modified PEG representative aromatic, heteroaromatic, unsaturated, and aliphatic imines were obtained in high yields by different procedures. The polymer-supported imines were then employed to prepare several beta-lactams by enolate/imine condensation and ketene/imine cycloaddition. Examples of the control of the absolute stereochemistry during the azetidinone ring formation are also reported. The reactions carried out on the polymer-bound imines showed a remarkable similarity to those performed on nonimmobilized imines, both in terms of yields and stereoselectivities. Removal of the beta-lactams from the polymer has also been accomplished to directly deliver the N-unsubstituted azetidinones.  相似文献   

9.
10.
Gold-cross-linked poly(ethylene glycol) nanocomposites were prepared by simultaneous photoinduced electron transfer and free radical polymerization processes.  相似文献   

11.
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films.  相似文献   

12.
Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.  相似文献   

13.
The surface of polyethersulfone (PES) membrane was modified by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol) (mPEG-PU-mPEG), which were synthesized through solution polymerization with mPEG Mns of 500 and 2000, respectively. The PES and PES/mPEG-PU-mPEG blended membranes were prepared through spin coating coupled with liquid-liquid phase separation. FTIR and (1)H NMR analysis confirmed that the triblock copolymers were successfully synthesized. The functional groups and morphologies of the membranes were studied by ATR-FTIR and SEM, respectively. It was found that the triblock copolymers were blended into PES membranes successfully, and the morphologies of the blended membranes were somewhat different from PES membrane. The water contact angles and platelet adhesion were decreased after blending mPEG-PU-mPEG into PES membranes. Meanwhile, the activated partial thromboplastin time (APTT) for the blended membranes increased. The anti-protein-fouling property and permeation property of the blended membranes improved obviously. SEM observation and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay proved the surfaces of the blended membranes promoted human hepatocytes adhesion and proliferation better than PES membrane.  相似文献   

14.
15.
The infrared absorption of poly(ethylene glycol) was measured in the molten state. Characteristic bands of the molten state were identified. Normal vibrations and frequency distributions were treated for various conformation models with CH2CH2O repeat units. The infrared absorption peaks of the molten state closely correspond to the frequency distribution peaks of the TGT conformation with gauche O? CH2? CH2? O groups, although infrared bands due to trans O? CH2? CH2? O groups are also observed. Vibrational assignments of the infrared bands and Raman lines were made on the basis of potential energy distributions.  相似文献   

16.
Coumarin-functionalized poly(ethylene glycol) (PEG) monols and diols were isothermally crystallized at temperatures between 20 and 35 °C before and after exposure to approximately 110 J cm−2 of ultra-violet A (λ > 300 nm, UVA) irradiation. Irradiation dimerized the coumarin groups and chain-extended the coumarin-functionalized PEG oligomers. The higher molecular weights reduced the crystal growth rate by as much as 50% compared to the non-irradiated coumarin-functionalized PEG oligomers under ambient crystallization conditions. Hoffman’s kinetic nucleation theory was utilized to evaluate the types of nucleation that occurred for the coumarin-functionalized PEG diols (COU-PEG-COU). Crystallization regimes II and III were observed for the coumarin-modified PEG oligomers before and after exposure to UVA light.  相似文献   

17.
Time-resolved light scattering was employed to investigate kinetics of phase separation in mixtures of poly (ethylene glycol monomethylether) (PEGE)/poly (propylene glycol) (PPG) oligomers. Phase diagrams for PEGE/PPG of varying molecular weights were established by means of cold point measurements. The oligomer mixtures reveal an upper critical solution temperature (UCST). Several temperature quench experiments were carried out with a 60/40 PEGE/PPG blend by rapidly quenching from a single phase (69°C) to two-phase temperatures (66–61°C) at 1°C intervals. As is typical for oligomer mixtures, the early stage of spinodal decomposition (SD) was not detected. The kinetics of phase decomposition was found to be dominated by the late stage of SD. Time-evolution of scattering intensity was analyzed in accordance with nonlinear and dynamical scaling theories. The time dependence of the peak intensity Im and the corresponding peak wavenumber qm was found to follow the power-law {Im(t)? tα, qm(t)? t} with the values of α = 3 ± 0.3 and β = 1 ± 0.2, which are very close to the values predicted by Siggia. This process has been attributed to a coarsening mechanism driven by surface tension. In the temporal scaling analysis, the structure function reveals university with time, suggesting self-similarity. Phase separation dynamics in 60/40 PEGE/PPG resembles the behavior predicted for off-critical mixtures.  相似文献   

18.
Poly(ethylene terephthalate) [PET] fibre wastes from an industrial manufacturer was depolymerised using excess ethylene glycol [EG] in the presence of metal acetate as a transesterification catalyst. The glycolysis reactions were carried out at the boiling point of ethylene glycol under nitrogen atmosphere up to 10 h. Influences of the reaction time, volume of EG, catalysts and their concentrations on the yield of the glycolysis products were investigated. The glycolysis products were analysed for hydroxyl and acid values and identified by different techniques, such as HPLC, 1H NMR and 13C NMR, mass spectra, and DSC. It was found that the glycolysis products consist mainly of bis(hydroxyethyl)terephthalate [BHET] monomer (>75%) which was effectively separated from dimer in quite pure crystalline form.  相似文献   

19.
Poly(ethylene glycol) grafted poly(L -lactide) was prepared by ring opening polymerization of L -lactide and epoxy-terminated poly(ethylene glycol) methyl ether (PEGME). Stannous octoate and Al(Et)3·0.5 H2O were tested as polymerization catalysts, and Al(Et)3·0.5 H2O was found to be more effective for the ring-opening of the epoxy group of the modified PEGME monomer. The synthesized polymers were characterized by NMR and the efficiency of the incorporation of epoxy-terminated PEGME in the copolymer was determined.  相似文献   

20.
Arrays of releasable micropallets with surrounding walls of poly(ethylene glycol) (PEG) were fabricated for the patterning and sorting of adherent cells. PEG walls were fabricated between the SU-8 pallets using a simple, mask-free strategy. By utilizing the difference in UV-transmittance of glass and SU-8, PEG monomer was selectively photopolymerized in the space surrounding the pallets. Since the PEG walls are composed of a cross-linked structure, the stability of the walls is independent of the pallet array geometry and the properties of the overlying solution. Even though surrounded with PEG walls, the individual pallets were detached from the array by the mechanical force generated by a focused laser pulse, with a release threshold of 6 microJ. Since the PEG hydrogels are repellent to protein adsorption and cell attachment, the walls localized cell growth to the pallet top surface. Cells grown in the microwells formed by the PEG walls were released by detaching the underlying pallet. The released cells/pallets were collected, cultured and clonally expanded. The micropallet arrays with PEG walls provide a platform for performing single cell analysis and sorting on chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号