首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report density functional and coupled cluster calculations on numerous monocyclic and bicyclic (CH)12(*-) isomers. At the RCCSD(T)/cc-pVDZ//UB3LYP/6-31+G* level, a nearly planar, bond-equalized radical anion of 1,7-di-trans-[12]annulene (4a(*-)) is lowest in energy; several other isomers and conformations lie within 3 kcal/mol of 4a(*-). RCCSD(T)/AUG-cc-pVDZ//UB3LYP/6-31+G* results place the all-cis isomer 3(*-) slightly below 4a(*-) in energy. Validation studies on the heptalene radical anion, [16]annulene radical anion, and tri-trans-[12]annulene radical anion indicate that electron spin resonance (ESR) hyperfine coupling constants (aH values) computed at the BLYP/EPR-III level on DFT geometries give much better agreement with experimental values than those computed using B3LYP/6-31G*. We were unable to locate any C12H12(*-) isomer that could account for the ESR spectrum previously attributed to a highly twisted structure for the 1,7-di-trans-[12]annulene radical anion. Our computed energetic and ESR data for [12]annulene radical anions and their valence isomers suggest that 4a(*-) may have been made, yet its ESR spectrum was incorrectly assigned to the bicyclic isomer 6b(*-). Finally, the computed (1)H NMR shift values of the dianion of 4 reveal a distinct diatropic ring current that should aid in its characterization.  相似文献   

2.
2-Chloromethyl and 3-chloromethyl-1,6-methano[10]annulene systems solvolyze in methanol to give simple substitution products. Solvent effect studies and the special salt effect support the involvement of cationic intermediates stabilized by the 1,6-methano[10]annulene group. Rate data indicate that the degree of cation stabilization greatly exceeds that of naphthyl groups. B3LYP/6-31G computational studies also suggest that the cationic intermediates are greatly stabilized by the 1,6-methano[10]annulene. By way of contrast to these findings, solvolytic and computational studies indicate that the 11-(1,6-methano[10]annulenyl) cation is a destabilized analogue of the cycloheptatrienyl cation. There are no favorable interactions with the annulene ring. Distortions from planarity prevent charge delocalization as in the analogous aromatic cycloheptatrienyl cation.  相似文献   

3.
Aromaticity and neutral homoaromaticity have been evaluated in methano[10]annulenes systems, 1,4-methano[10]annulene (1), 1,5-methano[10]annulene (2), and 1,6-methano[10]annulene (3). C-C bond lengths indicate that 1 presents higher bond alternation than 2 and 3. The relative energies were determined at the B3LYP/6-311+G(d,p) level, and they pointed out that 3 is the most stable isomer. Strain energies, evaluated employing homodesmotic reactions, show the same order as the relative energies. Through a decomposition of strain energies, it could be concluded that the rings absorb more tension than the bridges. The changes in aromaticity were evaluated by magnetic susceptibilities, chiM, HOMA, NICS, and resonance energies, RE. HOMA, RE, and chiM indicate that 2 and 3 are strongly, and 1 is fairly, aromatic. NICS does not provide reliable results, due to interference of ring and bridge atoms. NBO analysis presents some interactions that suggest the existence of neutral homoaromaticity. GPA indices (evaluated at the B3LYP/6-31G* level) point out that homoaromaticity plays a relevant role only in 3. Moreover, this work is the first in the current literature that studies 1,4-methano[10]annulene (1).  相似文献   

4.
Rzepa HS 《Organic letters》2005,7(21):4637-4639
[structure: see text] B3LYP and KMLYP/6-31G(d) calculations predict a double-helical and chiral conformation of [14]annulene with the topological properties of a double-twist M?bius band as highly aromatic; its energy with respect to the known Hückel-aromatic conformation is predicted to be stabilized by suitable ring substitution.  相似文献   

5.
Density functional and ab initio methods have been used to study the mechanisms for key dynamic processes of the experimentally known S4-symmetric [16]annulene (1a). Using BH&HLYP/6-311+G** and B3LYP/6-311+G**, we located two viable stepwise pathways with computed energy barriers (Ea = 8-10 kcal/mol) for conformational automerization of 1a, in agreement with experimental data. The transition states connecting these conformational minima have M?bius topology and serve as starting points for non-degenerate pi-bond shifting (configuration change) via M?bius aromatic transition states. The key transition state, TS1-2, that connects the two isomers of [16]annulene (CTCTCTCT, 1 --> CTCTTCTT, 2) has an energy, relative to the S4 isomer, that ranged from 6.9 kcal/mol (B3LYP/6-311+G**) to 16.7 kcal/mol (BH&HLYP/6-311+G**), bracketing the experimental barrier. At our best level of theory, CCSD(T)/cc-pVDZ(est), this barrier is 13.7 kcal/mol. Several other M?bius bond-shifting transition states, as well as M?bius topology conformational minima, were found with BH&HLYP energies within 22 kcal/mol of 1a, indicating that many possibilities exist for facile thermal configuration change in [16]annulene. This bond-shifting mechanism and the corresponding low barriers contrast sharply with those observed for cis/trans isomerization in acyclic polyenes, which occurs via singlet diradical transition states. All M?bius bond-shifting transition states located in [16]- and [12]annulene were found to have RHF --> UHF instabilities with the BH&HLYP method but not with B3LYP. This result appears to be an artifact of the BH&HLYP method. These findings support the idea that facile thermal configuration change in [4n]annulenes can be accounted for by mechanisms involving twist-coupled bond shifting.  相似文献   

6.
The low-temperature (-100 degrees C) dehydrohalogenation of bromocyclooctatetraene followed by immediate electron-transfer yields a stable solution of the [8]annulyne anion radical. If the unstable [8]annulyne is reacted with itself, cyclobutadiene, or benzyne, the respective bi-[8]annulenylene, [6]annuleno[8]annulene, or [6]-[8]annulenylene can be trapped as their anion radicals via one-electron transfer. These condensation products were all obtained from simple [2 + 2] cycloaddition reactions. B3LYP/6-31G geometry optimizations were carried out, and the calculated spin densities were compared to the EPR spectral results obtained for the anion radicals of [6]annuleno[8]annulene, [8]annulyne, bi[8]annulenylene, and [6]-[8]annulenylene, and excellent agreement has been realized. This simple "one-pot" approach should be applicable to a wide range of such systems.  相似文献   

7.
[reaction: see text] Neutral homoaromaticity has been evaluated in heterocyclic systems related to the bicyclo[3.2.1]octane skeleton with replacement of CH(2) at C-2 in bicyclo[3.2.1]octa-3,6-diene with X = BH, AlH, Be, Mg, O, S, PH, NH (12); replacement of CH at C-3 in bicyclo[3.2.1]octa-3,6-dien-2-yl anion with PH, S, NH, O (13); and replacement at C-2 and C-3 with N and O (14). Stabilization energies (SE) are evaluated using density functional theory and homodesmotic equations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level for series 12-14. Stabilization energies are compared with diamagnetic susceptibility exaltations, Lambda, CSGT-B3LYP/6-31G(d)//B3LYP/6-31G(d), and nucleus-independent chemical shifts (NICS), GIAO-B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d). Analysis of frontier orbitals and geometries, B3LYP/6-31G(d)//B3LYP/6-31G(d), and proton affinities of 2-azabicyclo[3.2.1]octa-3,6-diene, pyrrole, and related model systems, B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d), provide complementary evidence supporting the division of the substrates evaluated into antihomoaromatic (12, X = BH, AlH, and Be), nonhomoaromatic (12, X = O, S, NH, PH), and homoaromatic (13, X = S, PH, NH, O and 14 X = ON), with 12 (X = Mg) appearing as transitional between anti- and nonhomoaromatic.  相似文献   

8.
Diene-dienophile competing Diels-Alder reaction pathways of cyclopentadiene, 1H-, 2H- and 3H-phospholes with butadiene were explored at the B3LYP level using 6-31G(d) and 6-311+G(d,p) basis sets, and at the CCSD(T)/6-31G(d)//B3LYP/6-31G(d) level. Activation barriers show that cyclopentadiene favors a diene rather than a dienophile conformation. Pathways 1 and 2 (A and B) corresponding to butadiene as the diene and dienophile are predicted to be highly competitive in the case of 1H-phosphole. Secondary orbital interactions and the preferable bispericyclic nature of transition states are responsible for the stability of endo transition states. The study indicates that some of the transition states are bispericyclic and most of them are highly asynchronous. The reactions require a lower activation energy when the conversion of weak C=P to C-P occurs in the case of 2H- and 3H-phospholes. The high stability of the products resulting via path 1 can be attributed to the less strain in the bicyclo[4.3.0]nonadiene skeleton compared to the norbornene derivatives obtained from path 2. Activation and reaction energy values for these Diels-Alder reaction pathways are compared with the values reported for the [4+2] cyclodimerizations of each of the reactants to examine the likelihood of cyclodimerizations along these pathways.  相似文献   

9.
The structures, energetics, and aromatic character of dicyclobuta[de,ij]naphthalene, 1, dicyclopenta[cd,gh]pentalene, 2, dihydrodicyclobuta[de,ij]naphthalene, 3, and dihydrocyclopenta[cd,gh]pentalene, 4, have been examined at the B3LYP/6-311++G//B3LYP/6-31G level of theory. All molecules are bowl-shaped, and the pentalene isomers, 2 and 4, are most stable. A comparison with other C(12)H(6) and C(12)H(8) isomers indicates that 2 is approximately 25 kcal/mol less stable than 1,5,9-tridehydro[12]annulene and 4 is approximately 100 kcal/mol higher in energy than acenaphthylene, both of which are synthetically accessible. The transition state structure for bowl-to-bowl inversion of 1 is planar (D(2)(h)()) and lies 30.9 kcal/mol higher in energy than the ground state; the transition state for inversion of 2 is C(2)(h)() and lies 46.6 kcal/mol higher in energy. Symmetry considerations, bond length alternations, and NICS values (a magnetic criterion) all indicate that the ground states of 1, 3, and 4 are very aromatic; however, HOMA values (a measure of bond delocalization) indicate that 3S and 4S are aromatic but that 1S is less so. NICS values for the ground state of 2 strongly indicate aromaticity; however, bond localization, symmetry, and HOMA values argue otherwise.  相似文献   

10.
Density functional and coupled cluster calculations on neutral monodehydro[12]annulenes (C(12)H(10)) reveal a global minimum that should be kinetically stable. At the CCSD(T)/cc-pVDZ//BHLYP/6-31G* level, the unsymmetrical CTCTC conformer 1a lies at least 3 kcal/mol below all other isomers studied. The two isomers closest in energy to 1a are Mo?bius structure 5a (CCTCC) and all-cis 6a. Isomer 1a can undergo conformational automerization with E(a) = 3.9 kcal/mol, implying that this process would be rapid on the NMR time scale, and computed (1)H NMR parameters (GIAO-B3LYP/6-311+G**//RHF/6-31G*) are presented. Cumulenic dehydro[12]annulene isomers, with 1,2,3-butatriene subunits, were found to be reactive intermediates in the interconversion of different configurations of the alkyne forms. Pathways for configuration change of 1a, and for subsequent rearrangement to biphenyl, were investigated. The 28 kcal/mol overall barrier for the lowest energy pathway connecting 1a to biphenyl suggests that 1a is kinetically stable with respect to valence isomerization.  相似文献   

11.
[reaction: see text] The alcohol-catalyzed Diels-Alder reactions of acrolein and benzaldehyde with Rawal's diene were evaluated with density functional theory (B3LYP/6-31G(d)). Several potential modes of catalysis with two methanol molecules were used to model catalysis by TADDOLs. In agreement with crystallographic data, cooperative catalysis with TADDOLs is predicted to be favorable.  相似文献   

12.
This work deals with the theoretical study of Diels-Alder inverse and normal electron demand reactions. Based on various calculation methods such as SCF/6-31G and DFT/B3LYP with the standard basis set 6-31G, we discuss the possibility of reactions between cyclopentadiene with a series of 2-aryl-4,6-dinitrobenzotriazole 1-oxides from a thermodynamic perspective.  相似文献   

13.
The Lawesson reagent and P(2)S(5) mediated reductive coupling of phenalenone (6) gives LPAH peropyrene (5) in 47% and 54% yields. The mechanism of the reaction involves the formation of phenalenethione (10), Z- and E-1,1'-biphenalenylidene (3), and 9 as intermediates. The electrocyclization reaction of Z-3 to 9, followed by aromatization, gives 5. The results of an ab initio and DFT study of 3 and 2,2'-biphenalenylidene (12) are reported. E-3 and Z-3 have a diradical character with twist angles of 44.8 degrees and 57.8 degrees (at UB3LYP/6-311G**). Delta E(++)(Tot) = 10.2 kJ/mol and Delta G(++)(298) = 10.6 kJ/mol for E-3 <==> Z-3 diastereomerization. These unusually low energy barriers are due to the ground-state diradical destabilization and the aromatic stabilization of the transition state TS-3. Triplet Z-3 is higher in energy than singlets E-3 and Z-3 by 10.4 and 3.1 kJ/mol. In the concealed non-Kekulé 12, singlet 12 is more stable than the triplet by 1.3 kJ/mol. Singlet 12 is more stable than singlet E-3 by 2.0 kJ/mol, and orthogonal singlet TS-12 is lower in energy than singlet TS-3 by 6.0 kJ/mol. The energy barriers for the hexatriene-cyclohexadiene electrocyclization Z-3 --> 9 are Delta E(++)(Tot) = 94.8 and Delta G(++)(298) = 98.3 kJ/mol (at (U)B3LYP/6-31G). The reaction occurs thermally in a conrotatory mode.  相似文献   

14.
Iafe RG  Houk KN 《Organic letters》2006,8(16):3469-3472
[reaction: see text] Density functional theory (B3LYP/6-31+G) has revealed the origin of stereoselectivity in intramolecular Diels-Alder reactions of vinyl oxocarbenium ions. The cycloaddition has endo preference and occurs with remote stereocontrol syn to the substituent at the stereogenic center. Torsional steering, the preference for the staggered conformation about forming sigma-bonds, dictates the preferred transition structure.  相似文献   

15.
The exo and endo Diels-Alder adducts of p-methoxycarbonylbenzyl trans-1,3-butadiene-1-carbamate and N,N-dimethylacrylamide have been synthesized, and the absolute configurations of resolved enantiomers have been determined. On the basis of this information, the absolute enantioselectivities of the Diels-Alder reaction catalyzed by antibodies 13G5 and 4D5 as well as other catalytic antibodies elicited in the same immunizations have been established. The effects of different arrangements of catalytic residues on the structure and energetics of the possible Diels-Alder transition states were modeled quantum mechanically at the B3LYP/6-311++G**//B3LYP/6-31+G** level of theory. Flexible docking of these enantiomeric transition states in the antibody active site followed by molecular dynamics on the resulting complexes provided a prediction of the transition-state binding modes and an explanation of the origin of the observed enantioselectivity of antibody 13G5.  相似文献   

16.
The theoretical study reported in the present work deals with chiral cyclic vinyl sulfilimines and their reactivity as dienophiles in [4 + 2] cycloaddition reactions, using B3LYP/6-31G(d)//AM1 and B3LYP/6-31G(d)//B3LYP/6-31G(d) model chemistries. Consideration of Lewis acid catalysis, illustrated by BF(3), decreases the activation energies of the cycloaddition process while the charge transfer from the diene to the sulfilimine is augmented. The [4 + 2] cycloaddition reactions of sulfilimines with both furan and cyclopentadiene occur in the gas phase with endo stereoselectivity, which is more pronounced with the latter diene. Endo-exo energy differences in the gas phase with the B3LYP/6-31+G(d)//B3LYP/6-31+G(d), B3LYP/6-31G(d)//B3LYP/6-31G(d), and B3LYP/6-31G(d)//AM1 model chemistries are almost the same. Solvent effects are responsible for the inversion of the stereoselectivity in the reactions of sulfilimines with furan because of the great difference in the dipole moments in endo and exo approaches.  相似文献   

17.
In a previous paper (J. Phys. Chem. A2009, 113, 9721), we analyzed theoretically the Diels-Alder cycloaddition between cyclopentadiene and C(60) for which experimental results on energy barriers and reaction energies are known. One of the main conclusions reached was that the two-layered ONIOM2(B3LYP/6-31G(d):SVWN/STO-3G) method provides results very close to the full B3LYP/6-31G(d) ones. Unfortunately, however, both the exothermicity of the reaction and the energy barrier were clearly overestimated by these two methods. In the present work, we analyze the effect of the inclusion of Grimme's dispersion corrections in the energy profile of this reaction. Our results show that these corrections are essential to get results close to the experimental values. In addition, we have performed calculations both with and without dispersion corrections for the Diels-Alder reaction of C(60) and several dienes and for the Diels-Alder cycloaddition of a (5,5) single-walled carbon nanotube and 1,3-cis-butadiene. The results obtained indicate that inclusion of dispersion corrections is compulsory for the study of the chemical reactivity of fullerenes and nanotubes.  相似文献   

18.
Lu X  Tian F  Wang N  Zhang Q 《Organic letters》2002,4(24):4313-4315
[structure: see text] The viability of the Diels-Alder (DA) cycloaddition of conjugated dienes onto the sidewalls of single-wall carbon nanotubes is assessed by means of a two-layered ONIOM(B3LYP/6-31G:AM1) approach. Whereas the DA reaction of 1,3-butadiene on the sidewall of an armchair (5,5) nanotube is found to be unfavorable, the cycloaddition of quinodimethane is predicted to be viable due to the aromaticity stabilization at the corresponding transition states and products.  相似文献   

19.
B3LYP/6-31+G(d) calculations of structures and relative energies for competing transition states for intramolecular Diels-Alder reactions of substituted 3,5-hexadienyl acrylates and acrylamides show that boatlike conformations are sometimes favored in the forming ring that includes the tether.  相似文献   

20.
Symmetrically hindered methylphenols 1 react smoothly with NBS to form transient intermediates, p-benzoquinone methides (BM), which can be further processed to give hydroxybenzaldehydes in the presence of DMSO. This reaction is initiated by the formation of the phenoxy radical, followed by disproportionation to afford BM. None of the side-chain-brominated product is observed. The existence of BM is supported by the following observations: the formation of BM in solution can be monitored by GC and GC-MS; the electrophilic methine part participates in electrophilic aromatic substitution with anisoles to give hydroxybenzylated products 15; and the double bond character of the exocyclic methine plays a role in [4 + 2] cycloaddition with diene to afford Diels-Alder adducts. In contrast, unsymmetrically hindered or simple methylphenol (p-cresol) with NBS gives the nuclear brominated products, as usual. The energies of symmetrically hindered BMs, unsymmetrically hindered BM, and simple BM were calculated using density functional theories. Relative stabilization energies calculated at the B3LYP/6-31G//B3LYP/6-31G level by an isodesmic equation are enhanced 3-6 kcal/mol for symmetrically hindered BMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号