首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Letf (z) be an entire function λn(n=0,1,2,...) complex numbers, such that the system f(λn n=0 is not complete in the circle ¦z¦n(z) have the form \(\sum\nolimits_{k = 0}^{p_n } {\alpha _{nk} } f(\lambda _k \cdot z)\) . We study the properties of the limit function of the sequence Qn(z) in the case when $$f(z) = 1 + \sum\nolimits_{n = 1}^\infty {\frac{{z^n }}{{P(1)P(2)...P(n)}}} ,$$ . where P(z) is a polynomial having at least one negative integral root.  相似文献   

2.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

3.
The class \(B_{\varrho _1 } \) is introduced and thoroughly studied in the paper. By definition,H \(B_{\varrho _1 } \) if there exist sequences {А n } and {μ n }, ¦μ n ¦ ↑ ∞ (depending onH(?)) such that $$\mathop {\lim \sup }\limits_{t \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho _1 } }} = H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{k = 1}^\infty \left| {A_k E_\varrho \left( {\lambda _k z} \right)} \right|,$$ whereE ? (z) is a Mittag—Leffler function and? 1>?>1/2. The significance of the class \(B_{\varrho _1 } \) is confirmed by the following theorem. For each functionH \(B_{\varrho _1 } \) there exists a sequence {λ n } with the following property: every entire functionF(z) of order? 1 with the growth indicatorh F (?)< <H(?) can be expanded into the series $$F\left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty a_n E_\varrho \left( {\lambda _n z} \right),$$ furthermore, $$\mathop {\lim sup}\limits_{r \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho 1} }}< H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty \left| {a_n E_\varrho \left( {\lambda _n z} \right)} \right|.$$ The coefficientsa n are explicitly defined. The results were previously announced by the author inDokl. AN SSSR,264 (1982), 1313–1315.  相似文献   

4.
LetfA ρ (ρ>1), whereA ρ denotes the class of functions analytic in ¦z¦ <ρ but not in ¦z¦≤ρ. For any positive integerl, the quantity Δ l,n?1(f; z) (see (2.3)) has been studied extensively. Recently, V. Totik has obtained some quantitative estimates for \(\overline {\lim _{n \to \infty } } \max _{\left| z \right| = R} \left| {\Delta _{l,n - 1}^ - \left( {f;z} \right)} \right|^{1/n} \) . Here we investigate the order of pointwise convergence (or divergence) of Δ l,n?1(f; z), i.e., we study \(B_1 \left( {f;z} \right) = \overline {\lim _{n \to \infty } } \left| {\Delta _{l,n - 1} \left( {f;z} \right)} \right|^{1/n} \) . We also study some problems arising from the results of Totik.  相似文献   

5.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

6.
Изучаются ряды Риман а, рассматривавшиеся ранее в работах [1] и [2]. Пустьa n (n=1, 2,…) — последов ательность комплекс ных чисел иr n =a n +a 2n +. Предполо жим, чтоΣ¦a n ¦<∞. Тогда выпо лняются неравенства $$\begin{array}{*{20}c} {\sum\limits_n {\left| {r_n } \right| \leqq } \sum\limits_n {\left| {a_n } \right|} d(n),} & {\sum\limits_n {\left| {a_n } \right|} } \\ \end{array} \leqq \sum\limits_n {\left| {r_n } \right|2^{\omega (n)} ,} $$ гдеd(n) иω(n) — соответств енно число делителей и число простых делителейn. Е сли $$\begin{array}{*{20}c} {F(z) = \sum\limits_n {a_n z^n ,} } & {p_n (z) = \sum\limits_{s|n} {\mu \left( {\frac{n}{s}} \right)z^s ,} } \\ \end{array} $$ то \(F(z) = \sum\limits_n {r_n p_n (z)} \) для ¦z¦<1. В статье с одержатся некоторые результаты о сходимо сти рядов РиманаΣt n p n (z) на окружно сти ¦z¦=1. Например, если числаt n неотрицатель ны, монотонно убывают и \(\sum\limits_n {t_n< \infty } \) , то ряд равн омерно сходится для ¦z¦=1. Сформулированы неко торые новые задачи.  相似文献   

7.
Рассматривается последовательность преобразований Рисс а степенного ряда $$f(z) = \sum\limits_{v = 0}^\infty {\alpha _v z^n } ,$$ задаваемая формулой $$\sigma _n (z) = \sum\limits_{k = 0}^\infty {{\textstyle{{Pk} \over {P_n }}}s_k (z)} ,$$ гдеs k (z) — частная сумма порядкаk рядаf, a {p k } — комплексная послед овательность, для которой $$P_n = \sum\limits_{k = 0}^n {p_k \ne 0, n = 0,1,2,... .}$$ Показано, что число ну лей полиномовσ n в кру ге ¦z¦ <R связано при определе нных условиях лакунарнос ти с порядком роста {σn} и с их сверхсходимостью.  相似文献   

8.
In this note we find sufficient conditions for uniqueness of expansion of any two functionsf(z) and g(z) which are analytic in the circle ¦ z ¦ < R (0 < R <∞) in series $$f(z) = \sum\nolimits_{n = 0}^\infty {(a_n f_2 (z) + b_n g_n (z))}$$ and $$g_i (z) = \sum\nolimits_{n = 0}^\infty {a_n \lambda _n f_n (z)} + b_n \mu _n f_n (x)),$$ which are convergent in the compact topology, where (f n {z} n=0 and {g} n=0 are given sequences of functions which are analytic in the same circle while {λ n } n=0 and {μ n } n=0 are fixed sequences of complex numbers. The assertion obtained here complements a previously known result of M. G. Khaplanov and Kh. R. Rakhmatov.  相似文献   

9.
Let S k (Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group. Let λ f (n), λ g (n), λ h (n) be the nth normalized Fourier coefficients of three distinct holomorphic primitive cusp forms ${f (z) \in S_{k_1}(\Gamma), g(z) \in S_{k_2} (\Gamma), h(z) \in S_{k_3} (\Gamma)}$ respectively. In this paper we are able to establish nontrivial estimates for $$\sum_{n{\leq}x} \lambda_f(n)^5{\lambda_g}(n), \quad \sum_{n{\leq}x} \lambda_f(n) \lambda_g(n)\lambda_{h}(n)^j$$ , where 1 ≤ j ≤ 4.  相似文献   

10.
Three convolution-type equations are considered in the space of entire functions with topology ofd uniform convergence: $$\begin{gathered} M{_{\mu}{_1}} [f] \equiv \smallint _C f(z + t)d\mu _1 = 0, \hfill \\ M{_\mu{_1}} [f] \equiv \smallint _C f(z + t)d\mu _2 = 0, \hfill \\ M_\mu [f] \equiv \smallint _C f(z + t)d\mu = 0 \hfill \\ \end{gathered}$$ with respective characteristic functions L1(λ), L2(λ), L(λ)=L1(λ)· L2(λ), suppμ ?c, suppμ 1 ?c, suppμ 2 ?c. The necessary and sufficient conditions are found that every solutionf(z) of the equation Mμ[f[ can be written as a sumf 1(z) +f 2(z), wheref 1(z) is the solution of the equation \(M{_\mu{_1}} [f] = 0\) ,f 2(z) is the solution of the equation \(M{_\mu{_2}} [f] = 0\) .  相似文献   

11.
Пустьq∈(1, 2) иL=(q?1)?1. Дляz∈[0,L] обозначимδ(z) функцию, для которойδ(z)=1, еслиz≧1/q иδ(z)=0, еслиz<1/q. Пустьy(z) определяется из урав ненияz= =δ(z)q ?1+y(z)q ?1, и регулярное представление \(\mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)q^{ - n} \) аргументах определя ется из следующих соотношен ий: $$x = x_0 , \varepsilon _n \left( x \right) = \delta \left( {x_n } \right), x_{n + 1} = y\left( {x_n } \right).$$ ФункцияF: [0,L]→C называе тся аддитивной, если о на представляется в вид е $$F\left( x \right) = \mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)a_n ,$$ где ε ¦a n ¦<∞. «Бесконеч ное» представление 1=εl i q ?1 числа 1 определяется с ледующим образом: еслие n (1)=1 для б есконечно многихп, т оl n =ε n (1) (n=1, 2, ...); если ? максим альный индекс, для которогоε s (1)=1, то $$l_{ks + 1} = \left\{ \begin{gathered} \varepsilon _i \left( 1 \right) \left( {k = 0, 1, 2, ...; i = 1, ..., s - 1} \right) \hfill \\ 0 \left( {i = 0; k = 1, 2, ...} \right). \hfill \\ \end{gathered} \right.$$ В более ранней работе, опубликованной в это м журнале, авторы доказали, что а ддитивная функция является неп рерывной на отрезке [0,L] тогда и только тогда, когда ра венство $$a_n = \mathop \Sigma \limits_{i = 1}^\infty l_i a_{n + 1} $$ выполняется для всехnN. В настоящей работе ра ссматриваются непре рывные функции для которых в ыполняются дополнительные усло вия видаa n =O(q ??n ) (0a n ≧0. Анализируются их свя зи с корнями функцииG(z)=1 +ε l i z i . Доказы вается, что непрерывн ая аддитивная функция и ли вляется линейной, или нигде не дифференцир уема на отрезке [0,L].  相似文献   

12.
We study the subclass Wσ(A) of the class of entire transcendental functions f(z)of exponential type with index not greater than σ satisfying the condition $$\int_{ - \infty }^\infty {\left| {f(x)} \right|^2 dx \leqslant A^2 .}$$ We find the set of values of the quantities f(z), f′(z), etc. when z is fixed and f runs through the subclass Wσ(A). We study extremal values of functionals of the type Φ(f(z), f ′(z)). In particular, we obtain upper bounds on the quantities ¦f(z +β/2) ± f(z?β/2) ¦ and ¦af '(z) + bof(z)¦.  相似文献   

13.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

14.
Polynomialsp 1,(z),p 2 (z), of degreen are defined by the relation \(p_1 (z) + p_2 (z)\prod\nolimits_{i = 1}^3 {(z - b_l )^{v_1 } } = O(z^{ - n - 1} ),z \to \infty \) , where \(\sum\nolimits_{i = 1}^3 {v_i = 0} \) . We obtain the asymptotic behavior of these polynomials asn→∞ and show that it agrees with a previous conjecture.  相似文献   

15.
For the coefficients bn of an odd function \(f(z) = z + \sum\nolimits_{k = 1}^\infty {{}^bk^{z^{2k + 1} } } \) , regular in the unit disk, we obtain the estimate $$|b_n | \leqslant \frac{1}{{\sqrt 2 }}\sqrt {1 + |b_1 |^2 } \exp \frac{1}{2}\left( {\delta + \frac{1}{2}|b_1 |^2 } \right),where \delta = 0.312,$$ (1) from which it follows that ¦bn¦≤1, if ¦b1¦≤0.524. It follows from (1) that the coefficients cn, n = 3, 4,..., of a regular function \(f(2) = z + \sum\nolimits_{k = 2}^\infty {{}^ck^{z^k } } \) , univalent in the unit desk, satisfy $$|c_n | \leqslant \frac{1}{2}\left( {1 + \frac{{|c_2 |^2 }}{4}} \right)n\exp \left( {\delta + \frac{{|c_2 |^2 }}{8}} \right),where \delta = 0.312,$$ in particular, ¦cn¦≤n, if ¦c2¦≤1.046.  相似文献   

16.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

17.
Letf be an entire function (in Cn) of exponential type for whichf(x)=0(?(x)) on the real subspace \(\mathbb{R}^w (\phi \geqslant 1,{\mathbf{ }}\mathop {\lim }\limits_{\left| x \right| \to \infty } \phi (x) = \infty )\) and ?δ>0?Cδ>0 $$\left| {f(z)} \right| \leqslant C_\delta \exp \left\{ {h_s (y) + S\left| z \right|} \right\},z = x + iy$$ where h, (x)=sup〈3, x〉, S being a convex set in ?n. Then for any ?, ?>0, the functionf can be approximated with any degree of accuracy in the form p→ \(\mathop {\sup }\limits_{x \in \mathbb{R}^w } \frac{{\left| {P(x)} \right|}}{{\varphi (x)}}\) by linear combinations of functions x→expi〈λx〉 with frequenciesX belonging to an ?-neighborhood of the set S.  相似文献   

18.
Пусть $$f_n (z) = \exp \{ \lambda _n z\} [1 + \psi _n (z)], n \geqq 1$$ гдеψ n (z) — регулярны в н екоторой односвязно й областиS, λ n — нули целой функц ии экспоненциальног о ростаL(λ) с индикатрис ой ростаh(?), причем $$|L\prime (\lambda _n )| > C(\delta )\exp \{ [h(\varphi _n ) - \varepsilon ]|\lambda _n |\} \varphi _n = \arg \lambda _n , \forall \varepsilon > 0$$ . Предположим, что на лю бом компактеK?S $$|\psi _n (z)|< Aq^{|\lambda |_n } , a< q< 1, n \geqq 1$$ гдеA иq зависит только отK. Обозначим через \(\bar D\) со пряженную диаграмму функцииL(λ), через \(\bar D_\alpha \) — смещение. \(\bar D\) на векторα. Рассмотр им множестваD 1 иD 2 так ие, чтоD 1 иD 2 и их вьшуклая обо лочкаE принадлежатS. Пусть \(\bar D_{\alpha _1 } \subset D_1 , \bar D_{\alpha _2 } \subset D_2 \) Доказывается, что сущ ествует некоторая об ластьG?E такая, что \(\mathop \cup \limits_{\alpha \in [\alpha _1 ,\alpha _2 ]} \bar D_\alpha \subset G\) и дляzG верна оценка $$\sum\limits_{v = 1}^n {|a_v f_v (z)|} \leqq B\max (M_1 ,M_2 ), M_j = \mathop {\max }\limits_{t \in \bar D_j } |\sum\limits_{v = 1}^n {a_v f_v (t)} |$$ , где константаB не зав исит от {a v }.  相似文献   

19.
Letk n be the smallest constant such that for anyn-dimensional normed spaceX and any invertible linear operatorTL(X) we have $|\det (T)| \cdot ||T^{ - 1} || \le k_n |||T|^{n - 1} $ . LetA + be the Banach space of all analytic functionsf(z)=Σ k≥0 a kzk on the unit diskD with absolutely convergent Taylor series, and let ‖fA + k≥0κ|; define ? n on $\overline D ^n $ by $ \begin{array}{l} \varphi _n \left( {\lambda _1 ,...,\lambda _n } \right) \\ = inf\left\{ {\left\| f \right\|_{A + } - \left| {f\left( 0 \right)} \right|; f\left( z \right) = g\left( z \right)\prod\limits_{i = 1}^n {\left( {\lambda _1 - z} \right), } g \in A_ + , g\left( 0 \right) = 1 } \right\} \\ \end{array} $ . We show thatk n=sup {? n1,…, λ n ); (λ1,…, λ n )∈ $\overline D ^n $ }. Moreover, ifS is the left shift operator on the space ?∞:S(x 0,x 1, …,x p, …)=(x 1,…,x p,…) and if Jn(S) denotes the set of allS-invariantn-dimensional subspaces of ?∞ on whichS is invertible, we have $k_n = \sup \{ |\det (S|_E )|||(S|_E )^{ - 1} ||E \in J_n (S)\} $ . J. J. Schäffer (1970) proved thatk n≤√en and conjectured thatk n=2, forn≥2. In factk 3>2 and using the preceding results, we show that, up to a logarithmic factor,k n is of the order of √n whenn→+∞.  相似文献   

20.
Let us consider a function $$\begin{gathered} \varphi (z) = \min \max f_{ij} (z), \hfill \\ \begin{array}{*{20}c} --- \\ {j \in 1,N} \\ \end{array} \begin{array}{*{20}c} --- \\ {j \in 1,N_j } \\ \end{array} \hfill \\ \end{gathered} $$ where the functionsf ij(z) are supposed to be continuously differentiable and real-valued on a set Ω ofE n,z?E n. The problem is to find maxz?Ω?(z). In this paper, it is proved that ?(z) is directionally differentiable. A necessary condition for a maximum is derived, and some numerical algorithms for maximizing ? are suggested. The results obtained can be applied for solving some problems in mathematical programming and control theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号