首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is assumed that the Higgs particle distorts space-time in its own neighborhood and generates a self-referential nonlinear field. Its almost flat space-time metric form gives a nonlinear equation of motion admitting soliton-like solutions. This in turn gives rise to a new type of wave—space-time (mass-transmitting) interactions allowing particles to acquire mass. The curvature of the (pseudo-) Riemannian manifold of a Higgs space-time yields the mass formulam 2 WZ =d 3 x detGR H (x)=1/4m 2 H orm H =182 GeV.  相似文献   

2.
3.
4.
5.
The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11) GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.  相似文献   

6.
7.
8.
It is shown that a systematic perturbation expansion of spontaneously broken gauge theory imposes a constraint on the upper as well as the lower limit of the Higgs boson mass. In the standard SU(2) × U(1) model, the Higgs boson mass is calculated to be between 13 GeV and 500 GeV for the weak mixing angle, θ ≈ 35°.  相似文献   

9.
We consider the equivalent vector boson approximation (EVBA) for the processqqqqWWqqH andqqqqZZqqH. It is shown that the contributions σT and σL, of the transversely and longitudinally polarized vector bosonsV respectively, are comparable with each other for intermediate values ofm H viz. 0.3 TeV to 0.6 TeV. σT can be as large as 1.5–2 times σL in this mass range. As a result the leading EVBA for σ=σLT overestimates the exact total cross-section by a factor, upto 2–3 even, at high energies. σT is negligible with respect to the leading contribution σL only form H≧0.6 TeV, where EVBA is correct within 15–20%. Further the effect of the corrections to EVBA, which are naively of nonleading order, on these conclusions in the framework of the EVBA is discussed.  相似文献   

10.
An estimation of the Higgs boson mass is performed by numerically solving the renormalization group equations in the two loop approximation based on the condition for SU(2), U(1) gauge and the Higgs quartic coupling constants, respectively. This condition is introduced in the new scheme of our noncommutative differential geometry (NCG) for the reconstruction of the standard model. However, contrary to GUT without supersymmetry, the grand unification of coupling constants is not realized in this scheme. The physical mass of the Higgs boson depends strongly on the top quark mass through the Yukawa coupling of the top quark in the functions. The two loop effect lowers the numerical value calculated within the one loop approximation by several GeV. The Higgs boson mass varies from 150.93 GeV to 167.96 GeV corresponding to . We find GeV for GeV and GeV for GeV. Received: 16 July 1997 / Published online: 23 February 1998  相似文献   

11.
We analyse one-loop radiative corrections to the inflationary potential in the theory, where inflation is driven by the Standard Model Higgs field. We show that inflation is possible provided the Higgs mass mHmH lies in the interval mmin<mH<mmaxmmin<mH<mmax, where mmin=[136.7+(mt−171.2)×1.95] GeVmmin=[136.7+(mt171.2)×1.95] GeV, mmax=[184.5+(mt−171.2)×0.5] GeVmmax=[184.5+(mt171.2)×0.5] GeV and mtmt is the mass of the top quark. In the renormalization scheme associated with the Einstein frame the predictions of the spectral index of scalar fluctuations and of the tensor-to-scalar ratio practically do not depend on the Higgs mass within the admitted region and are equal to ns=0.97ns=0.97 and r=0.0034r=0.0034 correspondingly.  相似文献   

12.
13.
The total hadronic decay width of the Weinberg-Salam type Higgs boson is estimated in QCD for the Higgs boson mass much larger than the ordinary hadronic mass scale, by use of the operator product expansion and renormalization group equation. We give an explicit formula for the decay width in terms of quark masses including strong interaction corrections up to the next-to-leading order. A numerical analysis of the hadronic decay width of the Higgs boson is made in the six-quark model. The next-to-leading order correction is found to be significant, e.g., 30-20% of the leading term for mH of oue interest, mH ? 1 TeV. Application of our scheme to the decay rates of heavy Higgs bosons of other types is also discussed.  相似文献   

14.
吴雨生  徐来林  张扬 《物理》2022,51(11):747-753
希格斯玻色子发现于2012年,是粒子物理学研究中的一件划时代的大事。它在粒子物理的“标准模型”中起关键性作用,通过神秘的对称性破缺机制给基本粒子带来质量,和高深莫测的量子真空息息相关,也被认为在宇宙演化的极早期起重要作用。在希格斯玻色子发现十周年之际,文章将从科普视角出发,描绘希格斯玻色子的理论背景、粒子特性、实验探测、研究现状和展望,揭开希格斯玻色子的神秘面纱,理解它的过去、现在和未来。  相似文献   

15.
16.
Within the minimal supersymmetric extension of the standard model, the mass of the light CP-even Higgs boson is computed to three-loop accuracy, taking into account the next-to-next-to-leading order effects from supersymmetric quantum chromodynamics. We consider two different scenarios for the mass hierarchies of the supersymmetric spectrum. Our numerical results amount to corrections of about 500 MeV, which is of the same order as the experimental accuracy expected at the CERN Large Hadron Collider.  相似文献   

17.
We present a new global fit to precision electroweak data, including new low- and high-energy data and analyzing the radiative corrections arising from the minimal symmetry breaking sectors of the Standard Model (SM) and its supersymmetric extension (MSSM). It is shown that present data favor a Higgs mass of ${cal O}(M_Z)$: $$M_{H}=76 {+ 152 ?op -50}{? GeV}.$$ We confront our analysis with (meta) stability and perturbative bounds on the SM Higgs mass, and the theoretical upper bound on the MSSM Higgs mass. Present data do not discriminate significantly between the SM and MSSM Higgs mass ranges. We comment in passing on the sensitivity of the Higgs mass determination to the values of $←pha (M_Z)$ and ${←pha_s} (M_Z)$.  相似文献   

18.
We derive the width of the Higgs boson into vector bosons. General formulas are derived both for the on–shell decay as well for the off–shell decays, and , where . For the off-shell decays the width of the decaying vector boson is properly included. The formulas are valid both for the Standard Model as well as for arbitrary extensions. As an example we study in detail the gauge-invariant effective Lagrangian models where we can have sizable enhancements over the Standard Model that could be observed at LEP. Received: 31 July 1998 / Revised version: 23 September 1998 / Published online: 6 November 1998  相似文献   

19.
《Physics letters. [Part B]》1988,211(4):457-464
If the triviality upper bound on the Higgs boson mass mH occurs for strong self-coupling, inferring properties of the Higgs from the euclidean propagator is in principle theoretically difficult whether in coordinate or momentum space. In that case, common methods of identifying mH in lattice field theory simulations may produce a value for which is at best distantly related to the true upper limit. We discuss some shortcomings and ambiguities of recent results suggesting that the maximum occurs for weak coupling and emphasize potential complications due to finite-size and non-Lorentz-invariant effects of the lattice. The situation is illustrated by reference to the behavior in an analytically soluble approximation based on a 1/N expansion.  相似文献   

20.
The leading diagrammatic two-loop corrections are incorporated into the prediction for the mass of the lightest Higgs boson, mh, in the Minimal Supersymmetric Standard Model (MSSM). The results, containing the complete diagrammatic one-loop corrections, the new two-loop result and refinement terms incorporating leading electroweak two-loop and higher-order QCD contributions, are discussed and compared with results obtained by renormalization group calculations. Good agreement is found in the case of vanishing mixing in the scalar quark sector, while sizable deviations occur if squark mixing is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号