首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonparametric regression problem has the objective of estimating conditional expectation. Consider the model $$Y = R(X) + Z$$ , where the random variableZ has mean zero and is independent ofX. The regression functionR(x) is the conditional expectation ofY givenX = x. For an estimator of the form $$R_n (x) = \sum\limits_{i = 1}^n {Y_i K{{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} \mathord{\left/ {\vphantom {{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} \right. \kern-\nulldelimiterspace} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} $$ , we obtain the rate of strong uniform convergence $$\mathop {\sup }\limits_{x\varepsilon C} \left| {R_n (x) - R(x)} \right|\mathop {w \cdot p \cdot 1}\limits_ = o({{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } \mathord{\left/ {\vphantom {{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } {\beta _n \log n}}} \right. \kern-\nulldelimiterspace} {\beta _n \log n}}),\beta _n \to \infty $$ . HereX is ad-dimensional variable andC is a suitable subset ofR d .  相似文献   

2.
By means of the Hoheisel—Montgomery prime number theorem it is shown that for every α≥1 the inequality $$|(\sigma (n)/n) - \alpha | \leqslant {1 \mathord{\left/ {\vphantom {1 {n^{({2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-\nulldelimiterspace} 5}) - \varepsilon } }}} \right. \kern-\nulldelimiterspace} {n^{({2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-\nulldelimiterspace} 5}) - \varepsilon } }}(\varepsilon > 0,\sigma (n) = \sum\limits_{d/n} d )$$ has infinitely many solutionsnN. It is highly probable that the exponent 2/5 can be replaced by 1.  相似文献   

3.
Suppose that p is a large prime. In this paper, we prove that, for any natural number N < p the following estimate holds: $$ \left. {\mathop {\max }\limits_{\left( {a,p} \right) = 1} } \right|\left. {\sum\limits_{q \leqslant N} {e^{{{2\pi iaq*} \mathord{\left/ {\vphantom {{2\pi iaq*} p}} \right. \kern-\nulldelimiterspace} p}} } } \right| \leqslant \left( {N^{{{15} \mathord{\left/ {\vphantom {{15} {16}}} \right. \kern-\nulldelimiterspace} {16}}} + N^{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} p^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} } \right)p^{0\left( 1 \right)} , $$ where q is a prime and q* is the least natural number satisfying the congruence qq* ≡ 1 (modp). This estimate implies the following statement: if p > N > p 16/17+? , where ? > 0, and if we have λ ? 0 (modp), then the number J of solutions of the congruence $$ q_1 \left( {q_2 + q_3 } \right) \equiv \lambda \left( {\bmod p} \right) $$ for the primes q 1, q 2, q 3N can be expressed as $$ J = \frac{{\pi \left( N \right)^3 }} {p}\left( {1 + O\left( {p^{ - \delta } } \right)} \right), \delta = \delta \left( \varepsilon \right) > 0. $$ This statement improves a recent result of Friedlander, Kurlberg, and Shparlinski in which the condition p > N > p 38/39+? was required.  相似文献   

4.
We study inequalities of the form $$ \tau (w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(A)w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ) \leqslant \tau (w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(B)w(A)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ),A \leqslant B $$ where τ is a trace on a von Neumann algebra or a C*-algebra, A and B are self-adjoint elements of the algebra in question, f and w are real-valued functions, and the “weight” function w is nonnegative.  相似文献   

5.
Zucker  I.J.  Joyce  G.S.  Delves  R.T. 《The Ramanujan Journal》1998,2(3):317-326
The integral $$\int_0^{{\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4}} {\ln \left( {\cos ^{{m \mathord{\left/ {\vphantom {m n}} \right. \kern-\nulldelimiterspace} n}} \theta \pm \sin ^{{m \mathord{\left/ {\vphantom {m n}} \right. \kern-\nulldelimiterspace} n}} \theta } \right)d\theta } $$ where m and n are relatively prime positive integers, is evaluated exactly in terms of elementary functions and the Catalan constant G.  相似文献   

6.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

7.
In this paper we construct a class of k-arcs in PG(2, q), q=p h, h>1, p≠3 and prove its completeness for h large enough. The main result states that this class contains complete k-arcs with $$k \leqslant 2 \cdot q^{{9 \mathord{\left/ {\vphantom {9 {10}}} \right. \kern-\nulldelimiterspace} {10}}} {\text{ }}\left( {10{\text{ divides }}h{\text{ and }}q{\text{ }} \geqslant {\text{ }}q_{\text{0}} } \right).$$ Such complete k-arcs are the unique known complete k-arcs with $$k \leqslant {q \mathord{\left/ {\vphantom {q 4}} \right. \kern-\nulldelimiterspace} 4}.$$   相似文献   

8.
For functions f which are bounded throughout the plane R2 together with the partial derivatives f(3,0) f(0,3), inequalities $$\left\| {f^{(1,1)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} ,\left\| {f_e^{(2)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left( {\left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_1 } \right| + \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_2 } \right|} \right)^2 ,$$ are established, where ∥?∥denotes the upper bound on R2 of the absolute values of the corresponding function, andf fe (2) is the second derivative in the direction of the unit vector e=(e1, e2). Functions are exhibited for which these inequalities become equalities.  相似文献   

9.
Kayumov  I. R. 《Mathematical Notes》2004,76(3-4):472-477
In this paper, the following sharp estimate is proved: $$\int_{0}^{2{\pi }} {\left| {F\prime \left( {e^{i\theta } } \right)} \right|^p d\theta \leqslant \sqrt {\pi } 2^{1 + p} \frac{{\gamma \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} {{\gamma \left( {1 + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} ,\quad p > - 1,$$ where F is the conformal mapping of the domain $D^ - = \left\{ {\zeta :\left| \zeta \right| > 1} \right\}$ onto the exterior of a convex curve, with $F\prime \left( \infty \right) = 1$ . For p=1, this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain F(D -).  相似文献   

10.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

11.
Let \(K = \mathbb{Q}(\sqrt d )\) be any quadratic number field with discriminantd. ζ K (s) denotes the Dedekind zeta-function. The purpose of this note is to prove the following asymptotic formula: $$\int\limits_0^T {|\zeta _K ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + it)|^2 dt = ({6 \mathord{\left/ {\vphantom {6 {\pi ^2 }}} \right. \kern-\nulldelimiterspace} {\pi ^2 }})} \prod\limits_{p/d} {(1 + {1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p})^{ - 1} \cdot R_K^2 \cdot T \cdot \log ^2 T + O_\varepsilon \left\{ {\left| d \right|1 + \varepsilon \cdot T \cdot \log T} \right\},} $$ where the implied constant depends only on ε. HereR K, denotes the residue of ζ K (s) ats=1.  相似文献   

12.
LetN C (x) be the number of integersmx such that there is an integera with 1≤a<m, (a, m)=1 and all partial quotients in the continued fraction expansion ofa/m are at mostC. We prove for allx≥1 that $$N_c (x) > {1 \mathord{\left/ {\vphantom {1 {\sqrt {2C} x^{{1 \mathord{\left/ {\vphantom {1 {2(1 - 1/C^2 )}}} \right. \kern-\nulldelimiterspace} {2(1 - 1/C^2 )}}} }}} \right. \kern-\nulldelimiterspace} {\sqrt {2C} x^{{1 \mathord{\left/ {\vphantom {1 {2(1 - 1/C^2 )}}} \right. \kern-\nulldelimiterspace} {2(1 - 1/C^2 )}}} }}$$ .  相似文献   

13.
Let \(T(x) = \sum\limits_{ord(G) \leqq x} {t(G),} \) , wheret(G) define the number of direct factors of a finite Abelian group.E. Krätzel ([5]) defined a remainderΔ 1(x) in the asymptotic ofT(x) and proved $$\Delta _1 (x)<< x^{{5 \mathord{\left/ {\vphantom {5 {12}}} \right. \kern-\nulldelimiterspace} {12}}} \log ^4 x.$$ Using two different methods to estimate a special three-dimensional exponential sum we get the better results $$\Delta _1 (x)<< x^{{{282} \mathord{\left/ {\vphantom {{282} {683}}} \right. \kern-\nulldelimiterspace} {683}}} \log ^4 x$$ and $$\Delta _1 (x)<< x^{{{45} \mathord{\left/ {\vphantom {{45} {109}}} \right. \kern-\nulldelimiterspace} {109}} + \varepsilon } (\varepsilon > 0).$$   相似文献   

14.
The well-known explicit estimation of the order of the Riemann zeta function $$\left| {\zeta (\sigma + it)} \right| \ll t^{c_1 (1 - \sigma )^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} } \ln ^{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} t$$ for \(\tfrac{1}{2} \leqslant \sigma \leqslant 1\) andt≧2 (see [3]) is proved with the constantc 1=21. The improvement of the constantc 1 is a consequence of some technical modifications in application of the Vinogradov's inequality for exponential sums with the constant improved byPantelejeva in [1].  相似文献   

15.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

16.
Найдены методы восст ановления интеграла по информации $$I\left( f \right) = \left\{ {f^{(j)} \left( {x_i } \right)\left( {j = 0, ..., \gamma _i - 1; i = 1, ..., n; 1 \leqq \gamma _i \leqq r; \gamma _i + ... + \gamma _n \leqq N} \right.} \right\},$$ оптимальные на класс ахW p r ,r=1,2,...; 1≦p≦∞. Это позволило, в частност и, получить наилучшие для классаW p r квадратурные форму лы вида $$\mathop \smallint \limits_0^1 f\left( x \right)dx = \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 1}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right)$$ И $$\mathop \smallint \limits_0^1 f\left( x \right)dx = af\left( 0 \right) + \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 0}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + bf\left( 1 \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right).$$   相似文献   

17.
В работе рассматрива ется асимптотика в ме трике пространстваL p (T N ),T N ={xR N , 0<x i <2π} ядра Р исса-Бохнера $$\Theta ^s \left( {x, \lambda } \right) = \left( {2\pi } \right)^{ - N} \mathop \Sigma \limits_{\left| n \right|^2< \lambda } \left( {1 - \frac{{\left| n \right|^2 }}{\lambda }} \right)^s e^{inx} \left( {x \in T^N , s \geqq 0, \lambda \geqq 0} \right)$$ при λ→∞. Доказывается, что есл иN≧4,p≧2N/(N?1) иs>N((N?1)/2N?1/p), то для произвольной точкиxT N существует п остояннаяC=C p (x, s) такая, что выполняется неравен ство $$\parallel \Theta ^s \left( {x - y, \lambda } \right) - \left( {2\pi } \right)^{ - {N \mathord{\left/ {\vphantom {N 2}} \right. \kern-\nulldelimiterspace} 2}} 2^s \Gamma \left( {s + 1} \right)\lambda ^{{N \mathord{\left/ {\vphantom {N 2}} \right. \kern-\nulldelimiterspace} 2}} J_{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} {{\left( {\left| {x - y} \right|\sqrt \lambda } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {x - y} \right|\sqrt \lambda } \right)} {\left( {\left| {x - y} \right|\sqrt \lambda } \right)^{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} \parallel _{L_p \left( {T^N } \right)} \leqq }}} \right. \kern-\nulldelimiterspace} {\left( {\left| {x - y} \right|\sqrt \lambda } \right)^{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} \parallel _{L_p \left( {T^N } \right)} \leqq }}$$ где нормаL p (T N ) берется по пе ременнойy, а черезJ v обозначена функция Б есселя первого рода порядкаv. СлучаиN=2 иN=3 рассматриваются отдельно.  相似文献   

18.
LetK be a quadratic number field with discriminantD and denote byF(n) the number of integral ideals with norm equal ton. Forr≥1 the following formula is proved $$\sum\limits_{n \leqslant x} {F(n)F(n + r) = M_K (r)x + E_K (x,r).} $$ HereM k (r) is an explicitly determined function ofr which depends onK, and for every ε>0 the error term is bounded by \(|E_K (x,r)|<< |D|^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2} + \varepsilon } x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6} + \varepsilon } \) uniformly for \(r<< |D|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6}} \) Moreover,E k (x,r) is small on average, i.e \(\int_X^{2X} {|E_K (x,r)|^2 dx}<< |D|^{4 + \varepsilon } X^{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2} + \varepsilon } \) uniformly for \(r<< |D|X^{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0em} 4}} \) .  相似文献   

19.
It is established that H. Bohr’s inequality \(\sum\nolimits_{k = 0}^\infty {\left| {{{f^{\left( k \right)} \left( 0 \right)} \mathord{\left/ {\vphantom {{f^{\left( k \right)} \left( 0 \right)} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right| \leqslant \sqrt 2 \left\| f \right\|_\infty }\) is sharp on the class H .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号