首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The kinetics of the formation of biologically active psoralen photooxidation (POP) products were analyzed by the biological effects produced. Effects of the UV light fluence rate and psoralen concentration during the preir-radiation were investigated to assess the yield of POP products, which were active in vivo (inducing suppression of delayed-type hypersensitivity [DTH] reaction to sheep red blood cells) and in vitro (altering the human erythrocyte membrane permeability). It was shown that the reciprocity law of the irradiation fluence rate and time was not valid in the case of POP-induced hemolysis and DTH suppression. Immunosuppressive POP products were more efficiently formed at low fluence rate (20.8 W/m2), whereas POP hemolysins were more efficiently produced at a high fluence rate (180 W/m2) of UV light. The yield of immunosuppressive POP products was enhanced in dilute psoralen solutions, while the POP hemolysins yield increased with increasing psoralen concentration. A kinetic scheme for psoralen photoproduct formation was proposed. Kinetic analysis showed that a labile intermediate was produced as the result of excitation of psoralen. This intermediate was either converted to a stable immunosuppressive POP product, or two intermediates combined to form a POP hemolysin. It is proposed that PUVA therapy conditions are more favorable for the formation of immunosuppressive rather than membrane-damaging psoralen photooxidation products.  相似文献   

2.
Reactive oxygen species are considered to play an important role in cutaneous pathology. Enzymic and non-enzymic antioxidants can prevent oxidative damage but may be overcome by strong pro-oxidative stimuli. The acute effect of a single exposure to near ultraviolet (UVA)/visible radiation (greater than 320 nm) on various skin antioxidants was examined in hairless mice immediately after irradiation. Impairment of cutaneous catalase and glutathione reductase activity was observed. Superoxide dismutase and glutathione peroxidase were not significantly influenced. Inhibition of catalase may render skin more susceptible to the damaging effects of hydrogen peroxide and its reaction products such as the hydroxyl radical. Partially diminished glutathione reductase activity is not accompanied by a change in reduced/oxidized glutathione level immediately after irradiation. There was a tendential (not statistically significant) decrease in cutaneous tocopherol, ubiquinol + ubiquinone 9 and ascorbic acid levels, either indicating direct photodestruction or consumption by reaction products of photooxidative stress. This partial impairment of the cutaneous antioxidant defense system by near ultraviolet/visible light, showing that the most susceptible component in skin is catalase, suggests possible pharmacological interventions.  相似文献   

3.
Psoralen-sensitized photodamage (PUVA) of rat peritoneal exudate cells was investigated. Quartz-activated luminol-dependent chemiluminescence (ChL) was registered and the amount of trypan-positive cells was determined. Irradiation of peritoneal exudate cells in the presence of psoralen resulted in a dose-dependent monotonous inhibition of ChL. The reciprocity law of irradiation intensity and duration of irradiation was not valid for the observed inhibition of ChL: the inhibition increased with higher intensity. When psoralen previously photooxidized in ethanol (POP) was added to peritoneal exudate cell suspension, a double-phase response depending on psoralen irradiation dose was obtained: ChL activation was observed at low doses of UVA, ChL inhibition at high doses. Chemiluminescence inhibition correlated well with the increase in the number of trypan-positive cells. It may be supposed that the observed effects of PUVA or POP treatment are caused by cell cytoplasmic membrane damage.  相似文献   

4.
Abstract— Mechanism of the photogeneration of hydrogen peroxide and superoxide ion from tryptophan (Trp) and its photooxidation products was investigated. Near-ultraviolet irradiation of 3a-hydro-peroxypyrrolidinoindole, an intermediate in the photooxidation of Trp, has been shown to generate hydrogen peroxide efficiently under aerobic conditions. Irradiation of N-formylkynurenine in the presence of 3α-hydroxypyrrolidinoindole also produced hydrogen peroxide. The formation of superoxide ion in both reactions has been confirmed, whereas the reaction of Trp with chemically generated singlet oxygen did not produce any detectable amount of superoxide ion.  相似文献   

5.
Abstract— Psoralen complexed with DNA under irradiation at 365 nm forms monofunctional and bifunctional adducts with pyrimidine bases of DNA. while the fraction of psoralen which remains free in the aqueous solution forms photodimer and photooxidation products. We havc studied the photoreaction betwecn psoralen and DNA from a kinetic point of view. Only some products of this photoreaction could be measured quantitatively. Thus. in order to present a picture of the overall photoreaction. we have represented this by a mathematical model consisting of a system of seven differential equations. Utilizing all the experimental data that it was possible to obtain. we were able to estimate rate constants for formation of all photoproducts. From the general picture thus obtained. we conclude that monofunctional adducts are formed in a four to one ratio to bifunctional adducts. Among the monofunctional photoproducts. 3,4-cycloadducts occur with a higher yield than 4',5'-cycloadducts. The combined rate constant of formation of photodimer and photooxidation products of psoralen is small. indicating that they are marginal by-products relative to the cycloadducts formed in the photoreactions with DNA.  相似文献   

6.
利用荧光光谱研究了聚苯乙烯砜正性远紫外抗蚀剂薄膜和溶液的光氧化反应。发现聚苯乙烯砜的荧光随光照时间的延长而逐步减少。这一现象和在未辐照的聚苯乙烯砜中加入微量的芳香氢过氧化物或羰基化合物时的情况相同。这表明:聚苯乙烯砜经光照后荧光的淬灭和体系光氧化过程中产生了氢过氧化物或羰基化合物有关。这一方法适宜于对高聚物光氧化初始阶段的研究。  相似文献   

7.
The development of enzyme mimics of catalase which decompose hydrogen peroxide to water and molecular oxygen according to the 2:1 stoichiometry of native catalase and in aqueous solution at pH 7 and at micromolar concentrations of the enzyme model and hydrogen peroxide is reported. For this purpose, iron(III) complexes of 1,4,8,11-tetraaza[14]annulenes are prepared by various procedures. Efficacious preparations utilize reaction of the [N4] macrocyles with FeII salts in the presence of triphenylamine, followed by gentle oxidation of the FeII complexes by molecular oxygen or by tris(4-bromophenyl)aminium hexachloroantimonate. The complexes are characterized by SQUID magnetometry and by M?ssbauer, EPR, and UV/vis spectrometry. In the solid state, the iron(III) center of the catalytically active complexes exists in the intermediate (quartet, S = 3/2) spin state. Several of these complexes decompose hydrogen peroxide in aqueous buffer solution at pH 7.2 at room temperature with turnover numbers between 40 and 80. The apparent second-order rate constant for hydrogen peroxide decomposition is in the range of 1400-2400 M(-1) s(-1), about 3 orders of magnitude lower than the value for native catalase. Besides oxygen production, a non-oxygen releasing pathway of hydrogen peroxide decomposition is unveiled.  相似文献   

8.
The UVA (320-380 nm) radiation inactivation of mammalian cells is dependent upon the presence of oxygen. In order to examine the intermediates involved, we have irradiated cells in the presence of chemical probes which are able to modify the activity of various oxygen species. We have also examined the possibility that UVA inactivates cultured human fibroblasts via generation of intracellular hydrogen peroxide. An iron scavenger (desferrioxamine) and a hydroxyl radical scavenger (dimethylsulfoxide) protect the cells against hydrogen peroxide. Diethyldithiocarbamate (a superoxide dismutase inhibitor) and aminotriazole (a catalase inhibitor) sensitize the cells to this oxidizing agent. These data support previous reports that hydrogen peroxide inactivates as a result of the iron-catalyzed generation of hydroxyl radical. None of these agents significantly alter the fluence-dependent inactivation of cell populations by radiation at 365 nm. In contrast, the cells are sensitized to radiation at 334, 365 and 405 nm in the presence of deuterium (an enhancer of singlet oxygen lifetime) and are protected against radiation at 365 nm by sodium azide (a quencher of singlet oxygen). These results are consistent with the conclusion that the generation of singlet oxygen, but not hydrogen peroxide or hydroxyl radical, plays an important role in the inactivation of cultured human cells by UVA and near-visible radiations.  相似文献   

9.
Ketoprofen (KP) is a potent nonsteroidal anti-inflammatory drug. However, application to the skin is problematic because the photosensitizing properties of the benzophenone moiety may cause phototoxic effects when the treated skin region is exposed to UVA light. Using capillary electrophoresis with electrochemical detection we are able to differentiate the peroxides formed during illumination of KP-containing solutions of linoleic acid. Contrary to other profens a high amount of hydrogen peroxide was found among the reaction products. For investigation of the skin damaging effect human keratinocytes were used as models. Cell viability, DNA synthesis efficiency and intracellular concentration of peroxides were determined. Viability and proliferation behavior was not altered under the influence of KP. While lower concentrations of KP (10-100 nM) led to a protection against the UVA-induced (8 J/cm2) cell proliferation damage, higher concentrations (10-100 microM) led to an amplification of the proliferation decrease. With UVB irradiation at relevant doses the effects were lower than using UVA. Furthermore, intracellular peroxide content was increased after UV irradiation and KP addition. In conclusion some efforts have to be done to avoid these side effects in the use of KP for topical or transdermal application.  相似文献   

10.
The effect of continuous UV radiation and hydrogen peroxide on destruction and antioxidant properties of synthetic DOPA-melanin (prepared by oxidation of 3,4-dihydroxyphenylalanine (DOPA)) and melanosomes isolated from cells of the retinal pigment epithelium (RPE) was investigated. The kinetics of melanin destruction was recorded based on the accumulation of fluorescent low-molecular-weight reaction products, the antiradical activity of melanin was determined by chemiluminescence method, the concentration of free radical products was measured by electron paramagnetic resonance, and the antioxidant activity of melanins was estimated by their inhibitory effect on lipid peroxidation. It was shown that UVC—UVA irradiation (up to 5 hours) of DOPA-melanin and melanosomes of retinal pigment epithelium decreased neither the latency period of luminol chemiluminescence nor the inhibitory action of pigments on Fe2+- and UV-induced peroxidation of cardiolipin liposomes. However, very long UV irradiation gave rise to fluorescent destruction products, decreased the concentration of paramagnetic centers in the pigment (especially light-dependent ones), and decreased the antiradical and antioxidant activities. For example, UV irradiation of DOPA-melanin during 52 h resulted in approximately a 2-fold decrease in the concentration of paramagnetic centers and decline of antiradical and antioxidant activities. However, even with such a hard irradiation the pigment retained significant inhibitory activity against lipid peroxidation. The oxidative destruction of DOPA-melanin in the presence of hydrogen peroxide in the dark resulted in complete destruction of the polymer and loss of its protective properties. It is assumed that destruction of RPE cell melanin is caused mainly by oxidative processes.  相似文献   

11.
Abstraet—2'-Acetylformanilide has been found to be an effective, near-ultraviolet (300–380 nm) sensitizer for the photooxidation of nucleosides and nucleotides in aqueous solution, with hydrogen peroxide being formed in high yield. The decreasing order of hydrogen peroxide formation and substrate destruction was found to be: guanosine. adenosine, thymidine, uridine and cytidine. The process was highly pH dependent, low pH being most favorable for photooxidation. Experiments using deuterium oxide and superoxide dismutase indicate that both singlet oxygen and superoxide ion can be involved in hydrogen peroxide formation.  相似文献   

12.
Abstract— Photobiological activities of the benzo-spaced psoralen analog furonaphthopyranone 3 have been investigated in cell-free and cellular DNA. The molecular geometry parameters of 3 suggest that it should not form interstrand crosslinks with DNA. With cell-free DNA no evidence for crosslinking but also not for monoadduct formation was obtained; rather, the unnatural furocoumarin 3 induces oxidative DNA modifications under near-UVA irradiation. The enzymatic assay of the photosensitized damage in cell-free PM2 DNA revealed the significant formation of lesions sensitive to formamidopyrimidine DNA glyco-sylase (Fpg protein). In the photooxidation of calf thymus DNA by the furonaphthopyranone 3, 0.29±0.02% 8-oxo-7,8-dihydroguanine (8-oxoGua) was observed. With 2'-deoxyguanosine (dGuo), the guanidine-releasing photooxidation products oxazolone and oxoimidazolidine were formed predominately, while 8-oxodGuo and 4-HO-8-oxodGuo were obtained in minor amounts. The lack of a significant D2O effect in the photooxidation of DNA and dGuo reveals that singlet oxygen (type II process) plays a minor role; control experiments with tert -butanol and mannitol confirm the absence of hydroxyl radicals as oxidizing species. The furonaphthopyranone 3 (Ered= -1.93±0.03V) should act in its singlet-excited state as electron acceptor for the photooxidation of dGuo (δGET ca – kcal/mol), which corroborates photoinduced electron transfer (type I) as a major DNA-oxidizing mechanism. A comet assay in Chinese hamster ovary (CHO) AS52 cells demonstrated that the psoralen analog 3 damages cellular DNA upon near-UVA irradiation; however, no photosensitized mutagenicity was observed in CHO AS52 cell cultures  相似文献   

13.
Psoralens, also known as furocoumarins, are a well-known class of photosensitizers largely used in the therapy of various skin disease. In this study we have evaluated the effects of crude pre-irradiated solutions of furocoumarins derivatives on (a) erythroid differentiation and apoptosis of human leukemic K562 cells and (b) hemoglobin synthesis in cultures of human erythroid progenitors derived from the peripheral blood. To prove the activity of a mixture of photoproducts generated by UVA irradiation of the three psoralen derivatives 5-methoxypsoralen (5-MOP) 8-methoxypsoralen (8-MOP), and angelicin (ANG), we employed the human leukemic K562 cell line and the two-phase liquid culture procedure for growing erythroid progenitors. The results obtained demonstrate that pre-irradiated solutions of psoralen derivatives significantly induce erythroid differentiation of K562 cells irrespective of the type of derivative used, suggesting that the active photoproduct(s) share a common structure. Interestingly, solutions of psoralens irradiated in anaerobic conditions do not exhibits erythroid inducing ability, indicating that the effect is mostly due to photooxidized psoralen products. In erythroid precursor cells, psoralens photolysis products stimulates at low concentrations an increase of hemoglobin A and hemoglobin F. Altogether, these data suggest that photoproducts of psoralen warrant further evaluation as potential therapeutic drugs in beta-thalassaemia and sickle cell anaemia.  相似文献   

14.
Abstract After irradiation at 3655 Å of an aqueous frozen solution containing thymine and psoralen, a new photocompound was isolated by column chromatography. It contains a furocoumarin and a pyrimidine-moiety linked together by the formation of a cyclobutane ring (see formulas II and III). By irradiation at 2537 Å in acetic acid solution, the photocompound breaks up again yielding psoralen and thymine. From an aqueous frozen solution containing cytosine and psoralen irradiated at 3655 Å, an analogous photocompound was obtained, which, however, consists of the addition to psoralen of a uracil molecule, instead of a cytosine one (IV, V). It has been stated that the hydrolytic deamination of the cytosine moiety to the uracil one takes place during the working up of the photocompound in aqueous solution after irradiation. Substances with properties similar to those above were obtained from bergapten (5-methoxy-psoralen) and thymine, from psoralen and thymidine or thymidylic acid, irradiated at 3655 Å.
The new substances may be considered as model compounds in explaining the photoreactions which take place between the skin-photosensitizing furocoumarins and DNA upon irradiation at 3655 Å.  相似文献   

15.
Human lenses contain many photosensitizers that absorb light at wavelengths above 300 nm, most notably UVA light (320-400 nm). Kynurenine (Kyn) and 3-hydroxykynurenine (HK), two of the best-known photosensitizers in the human lens, may play a significant role in photooxidation-related changes in lens proteins, such as conformational change and aggregation. In vitro irradiation experiments with proteins indicate that the Trp residue (with maximal absorption at 295 nm) is more susceptible to photooxidation by UVB light (280-320 nm) than by UVA light, but most UVB light below 300 nm is screened by the cornea and little reaches the lens, especially the nuclear region where nuclear color develops. Therefore, if photooxidation is an important contributor to nuclear color or nuclear cataract, it must arise from a photosensitized reaction. In the present study, we use recombinant alpha A- and its Trp-deficient mutant W9F as models to study the effects of UVA irradiation in the presence of HK or Kyn and of UVB (300 nm) irradiation on alpha-crystallins. alpha A-crystallin showed a large decrease in Trp fluorescence and a large increase in non-Trp (blue) fluorescence after the HK-sensitized or 300 nm photooxidation. For the W9F mutant, a smaller decrease in protein fluorescence (lambda ex at 280 nm) and a smaller increase in blue fluorescence than for the wild-type alpha A-crystallin were observed. A decrease in the near-UV CD was also observed for both photooxidized alpha A and the W9F mutant. The effect of Kyn sensitization is smaller than that of HK sensitization. A study of chaperone-like activity indicated that only 300 nm photooxidized alpha A and the W9F mutant increased the ability to protect insulin from dithiothreitol-induced aggregation. Thus, sensitized photooxidation can occur in amino acids other than Trp by UVA in the presence of HK or Kyn with effects similar to, albeit smaller than, those of direct UVB (300 nm) photooxidation.  相似文献   

16.
The interaction between fullerene C60 and catalase enzyme was studied with a fullerene C60‐coated piezoelectric (PZ) quartz crystal sensor. The partially irreversible response of the C60‐coated PZ crystal sensor for catalase was observed by the desorption study, which implied that C60 could chemically react with catalase. Thus, immobilized fullerene C60‐catalase enzyme was synthesized and applied in determining hydrogen peroxide in aqueous solutions. An oxygen electrode detector with the immobilized C60‐catalase was also employed to detect oxygen, a product of the hydrolysis of hydrogen peroxide which was catalyzed by the C60‐catalase. The oxygen electrode/C60‐catalase detection system exhibited linear responses to the concentration of hydrogen peroxide and amount of immobilized C60‐catalase enzyme that was used. The effects of pH and temperature on the activity of the immobilized C60‐catalase enzyme were also investigated. Optimum pH at 7.0 and optimum temperature at 25 °C for activity of the insoluble immobilized C60‐catalase enzyme were found. The immobilized C60‐catalase enzyme could be reused with good repeatability of the activity. The lifetime of the immobilized C60‐catalase enzyme was long enough with an activity of 93% after 95 days. The immobilized C60‐catalase enzyme was also applied in determining glucose which was oxidized with glucose oxidase resulting in producing hydrogen peroxide, followed by detecting hydrogen peroxide with the oxygen electrode/C60‐catalase detection system.  相似文献   

17.
The interaction of radiation-generated 2-methyl-2-hydroxypropyl radicals (derived from t-butyl alcohol) with oxymyoglobin has been examined at pH 7.3. In N2O-saturated solutions, oxymyoglobin is converted to the ferri and ferryl derivatives of myoglobin; the production of ferrylmyoglobin is essentially eliminated when catalase is present in solution during irradiation. In deaerated solutions containing catalase, oxymyoglobin is converted to both ferro- and ferrimyoglobin during irradiation. When added O2 is initially present, all compositional changes occur after irradiation; the presence of catalase diminishes, but does not eliminate, the extent of these postirradiation conversions of oxymyoglobin to the ferri and ferryl derivatives. These observations are interpreted in terms of the scavenging of the 2-methyl-2-hydroxypropyl radicals by O2 to generate their peroxy analogs, which causes a displacement of the equilibrium between oxy- and ferromyoglobin. The peroxy radicals decay to produce H2O2, an organic peroxide, and other products. These peroxides subsequently react with ferromyoglobin to produce the ferryl form; the rate of the reaction increases with decreasing [O2] as [ferromyoglobin] increases. This reaction is sufficiently fast in deaerated solution that substantial conversion of ferromyoglobin to ferrylmyoglobin occurs during the time of irradiation. The formation of the ferryl derivative in the presence of unconverted ferromyoglobin drives a concurrent synproportion reaction which produces ferrimyoglobin. Overall, no direct interaction of 2-methyl-2-hydroxypropyl radicals, nor their peroxy analogs, with myoglobin is indicated; all reactivity is accountable by the peroxide products of these radicals.  相似文献   

18.
Voltammetric measurements at the surface of cotton fabric were conducted after impregnating the surface of the textile with graphite flakes. The resulting conducting surface contact was connected to a conventional basal plane pyrolytic graphite substrate electrode and employed both in stagnant solution and in rotating disc voltammetry mode. Diffusion through the immobilized cotton sample (inter-fiber) is probed with the aqueous Fe(CN)6(4-/3-) redox system. With a small amount of platinum immobilized at the cotton surface, catalase reactivity toward hydrogen peroxide was observed and used to further quantify the diffusion (intra- and inter-fiber) into the reactive zone at the graphite-cotton interface. A well-known catalase model system, the dinuclear manganese metal complex [Mn(IV)2(micro-O)3L2](PF6)2 (with L=1,4,7-trimethyl-1,4,7-triazacyclononane), is investigated in aqueous 0.1 M carbonate buffer at pH 9.8 in contact with cotton fabric. Absorption of the metal complex is monitored and quantified by voltammetric methods. A Langmurian binding constant of approximately K=2x103 M-1 was determined. Voltammetric measurements of the adsorbed metal complex reveal strong absorption and chemically irreversible reduction characteristics similar to those observed in solution. In the presence of hydrogen peroxide, catalyst coverage dependent anodic catalase activity was observed approximately following the rate law rate=k[catalyst]surface[H2O2]solution and with k=3x104 dm3 s-1 mol-1. The catalyst reactivity was modified by the presence of cotton.  相似文献   

19.
Extracts of Hypericum perforatum (St. John's wort) are used in the treatment of depression. They contain the plant pigment hypericin and hypericin derivates. These compounds have light-dependent activities. In order to estimate the potential risk of phototoxic skin damage during antidepressive therapy, we investigated the phototoxic activity of hypericin extract using cultures of human keratinocytes and compared it with the effect of the well-known phototoxic agent psoralen. The absorbance spectrum of our Hypericum extract revealed maxima in the whole UV range and in parts of the visible range. We cultivated human keratinocytes in the presence of different Hypericum concentrations and irradiated the cells with 150 mJ/cm2 UVB, 1 J/cm2 UVA or 3 h with a white light of photon flux density 2.6 mumol m-2 s-1. The determination of the bromodeoxyuridine incorporation rate showed a concentration- and light-dependent decrease in DNA synthesis with high hypericin concentrations (> or = 50 micrograms/mL) combined with UVA or visible light radiation. In the case of UVB irradiation a clear phototoxic cell reaction was not detected. We found phototoxic effects even with 10 ng/mL psoralen using UVA with the same study design as in the case of the Hypericum extract. These results confirm the phototoxic activity of Hypericum extract on human keratinocytes. However, the blood levels that are to be expected during antidepressive therapy are presumably too low to induce phototoxic skin reactions.  相似文献   

20.
Photooxygenation reaction of an unsaturated fatty acid ester, methyl linoleate (methyl 9- cis. 12- cis -octadecadienoate, ML-H), sensitized by porphyrins and several types of dyes has been studied in aqueous emulsion and acetonitrile solution under air at 40°C. The oxygen (O2) uptake proceeded slowly in the absence of sensitizers upon irradiation of an aqueous emulsion and an acetonitrile solution of ML-H (20 m M ) at ℷex > 290 nm (11.4 and 6.1 μmol h-1, respectively). The rate of O2 uptake was enhanced by a catalytic amount (0.1 m M ) of porphyrins and dyes; hematoporphyrin (HP), zinc tetrakis(N-methyl-4-pyridiniumyi)porphyrin (ZnTMPyP), methylene blue (MB), rose bengal (RB), acridine orange (AO), and acriflavine (AF). In both systems, the sensitized photooxidation of ML-H by O2 proceeded equimolarly to produce isomeric mixture of C9 and C13 hydroperoxides having the trans,cis and trans,trans conjugated diene configurations, independent of the types of the sensitizers used. The yield ratio of trans,trans/ trans,cis products in the MB-sensitized photooxygenation in acetonitrile and aqueous emulsion were almost equal (0.32 and 0.35. respectively). The sensitizing activity of the sensitizers, as measured by the quantum yield of O2 uptake, increased in the order: MB (≃ 0) < ZnTMPyP < RB < HP < AF < AO in the aqueous emulsion and AO < AF < HP < RB = MB in the acetonitrile solution. The order in homogeneous acetonitrile solution was interpreted by the sensitizing ability of the dyes to produce singlet oxygen, while that in heterogeneous aqueous emulsion was correlated to the lipophilicity of dyes as well as the singlet-oxygen-producing ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号