首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
使用聚合物电解质可以避免传统液态锂离子电池的漏液问题,提高电池的安全性能和能量密度,并可实现电池的薄型化、轻便化和形状可变等优点.目前,聚合物电解质的研究集中在凝胶型的复合和多孔聚合物电解质两大类.本文对各类凝胶聚合物电解质的特点、功能及研究情况逐一进行了介绍,对凝胶聚合物电解质的发展趋势进行了展望.  相似文献   

2.
HBPS-PEO多臂星形聚合物电解质的合成及离子导电性的研究   总被引:1,自引:0,他引:1  
通过叠氮化超支化聚苯乙烯(HBPS-N3)与端炔基聚乙二醇单甲醚(ay-PEO)的点击反应,合成了以超支化聚苯乙烯(HBPS)为核、不同分子量的聚氧化乙烯(PEO)为臂的多臂星形聚合物(HBPS-PEO),并利用ATR-FTIR,1H-NMR,GPC对合成的星形聚合物的结构进行了表征.将该种星形聚合物与双三氟甲基磺酰亚胺锂(LiTFSI)进行复合,制备了星形聚合物为基体的聚合物电解质,通过交流阻抗技术和DSC对该聚合物电解质的离子导电性能及热性能进行了研究.结果表明,星形结构可以在一定程度上抑制结晶的形成,这种新型的星形聚合物电解质的室温电导率明显高于相应的线形聚合物电解质,当n(EO)/n(Li)=40,PEO臂的分子量为1000时,该星形聚合物电解质的离子电导率最高,30℃时为6.7×10-5Scm-1,40℃时可以达到1.2×10-4Scm-1;TGA结果表明,制备的星形聚合物的初始分解温度(Tonset)都高于360℃,具有良好的热稳定性.  相似文献   

3.
锂离子电池用凝胶聚合物电解质研究进展   总被引:2,自引:0,他引:2  
凝胶聚合物电解质是制备高功率密度和高能量密度、长循环寿命的聚合物锂离子电池的重要材料之一。凝胶聚合物电解质由聚合物基体、锂盐和增塑剂等组成。本文重点论述了凝胶聚合物电解质各组成成分的相互作用以及近几年聚合物基体与增塑剂的研究进展。此外,对凝胶聚合物电解质的性能改进进行了讨论,并对凝胶聚合物电解质的应用前景进行了展望。  相似文献   

4.
有机-无机复合型聚合物电解质的研究进展   总被引:1,自引:1,他引:1  
聚合物电解质是现在锂离子电池研究领域的热点,有机-无机复合型聚合物电解质(CSPE)是现在聚合物电解质的研究主流。在聚合物电解质中添加无机添末,特别是纳米材料,大大改善了聚合物电解质的机械性能、离子导电性能以及界面稳定性能。对CSPE性能进行了评价,对在CSPE中添加无机粉末性能改善机理作了概括和探讨,并对CSPE的前景作了展望。  相似文献   

5.
与液体电解质相比较,聚合物电解质以其易加工、设计灵活、质量轻、安全无毒的特点而受到人们的广泛关注,具有取代液态电解质的潜在应用价值,而超支化/星形聚合物以其无定形、低玻璃化转变温度、支化结构等特点可被用于固态电解质。本文综述了超支化/星形聚合物电解质材料的研究进展,重点介绍了超支化/星形聚合物基电解质和超支化/星形聚合物共混基电解质,并对超支化/星形聚合物单一离子导体在锂离子电池方面的应用前景作了概述。  相似文献   

6.
锂单离子导电固态聚合物电解质是一类锂离子迁移数接近1的锂离子导体,可以有效避免阴离子移动产生浓差极化,从而提高锂电池的容量以及循环性能,成为近年来固态聚合物电解质的研究热点。本文综述了锂单离子导电固态聚合物电解质的研究进展,重点关注了电导率和锂离子迁移数较高的体系,并简要评述了锂单离子导电固态聚合物电解质所面临的挑战以及发展前景。  相似文献   

7.
低分子量聚合物电解质的合成与性能   总被引:4,自引:0,他引:4  
研究了低分子量梳状聚合物电解质的合成方法及结构,性能。首先合成了不同分子量的甲基丙烯酸聚乙二醇单甲醚酯,并进一步合成了分子量一万左右的梳状聚合物电解质,结果表明:反应严格按照反应方程进行,精制产物是非晶的梳状聚合物,本聚合物体系均存在两个玻璃化转变温度,一个在100℃左右,归属为梳状聚合物主链的玻璃化转变,另一个在-20摄氏度以下,归属于侧链玻璃化转变,在室温下侧链可以运动,有利于电活性物质的迁移和扩散,并用超微电极研究了该电解质的行为。  相似文献   

8.
聚丙烯腈基聚合物电解质   总被引:7,自引:0,他引:7  
唐致远  王占良 《化学通报》2002,65(6):379-384
详细介绍了锂离子电池用PAN(聚丙烯腈)基聚合物电解质的发展过程和制备方法,提出了PAN基凝胶型聚合物电解质所存在的主要问题,介绍了采用共聚和掺杂陶瓷材料对PAN的改性方法,并对聚合物电解质的离子传输机理作了初步探讨。  相似文献   

9.
代丽君 《应用化学》2006,23(9):1014-0
EVOH梳型单离子聚合物的合成及其离子电导电性质;梳型聚合物;聚合物电解质;交流阻抗谱  相似文献   

10.
本文成功制备了磺酸锂功能化石墨烯,通过原位聚合方式成功将其添加到单离子传导聚合物电解质中制备出磺酸锂功能化石墨烯改性半互穿网络型多孔单离子传导聚合物复合电解质.与未掺杂磺酸锂功能化石墨烯半互穿网络型多孔单离子传导聚合物电解质相比,该电解质具有更高的孔隙率、吸液率、机械拉伸强度和离子电导率.电化学测试结果表明,掺杂磺酸锂...  相似文献   

11.
Ionic liquids(ILs) have appeared as the most promising electrolytes for lithium-ion batteries, owing to their unique high ionic conductivity, chemical stability and thermal stability properties. Poly(ionic liquid)s(PILs) with both IL-like characteristic and polymer structure are emerging as an alternative of traditional electrolyte. In this review, recent progresses on the applications of IL/PIL-based semi-solid state electrolytes, including gel electrolytes, ionic plastic crystal electrolytes, hybrid electrolytes and single-ion conducting electrolytes for lithium-ion batteries are discussed.  相似文献   

12.
As lithium-ion batteries have been the state-of-the-art electrochemical energy storage technology, the overwhelming demand for energy storage on a larger scale has triggered the development of next-generation battery technologies possessing high energy density, longer cycle lives, and enhanced safety. However, commercial liquid electrolytes have been plagued by safety issues due to their flammability and instability in contact with electrodes. Efforts have focused on developing such electrolytes by covalently immobilizing anionic groups onto a polymer backbone, which only allows Li+ cations to be mobile through the polymer matrix. Such ion-selective polymers provide many advantages over binary ionic conductors in battery operation, such as minimization of cell polarization and dendrite growth. In this review, the design, synthesis, fabrication, and class are reviewed to give insight into the physicochemical properties of single-ion conducting polymer electrolytes. The standard characterization method and remarkable electrochemical properties are further highlighted, and perspectives on current challenges and future directions are also discussed.

A review of the physicochemical properties of single-ion conducting polymer electrolytes is presented. The standard characterization method, remarkable electrochemical properties and perspectives are further highlighted.  相似文献   

13.
The present paper narrates the single-ion conduction of the network polymer with lithium sulfonate as pendant group studied by using DC polarization. The Willianms-Landel-Ferry parameters, calculated from the temperature dependence of conductivity, agree reasonably well with universal values, verifying the influence of segmental motion on conductivity. Additional confirmation was obtained from a Vogel-Tammann-Fulcher plots. The battery composed of (Li/this film/PAn) performs better characteristics than other systems using polymer solid electrolytes.  相似文献   

14.
聚合物单阳离子导体的制备—羧酸型梳状单离子导体   总被引:1,自引:1,他引:1  
本文报道一种制备聚合物单阳离子导体的新方法。马来酸酐-醋酸乙烯酯及马来酸酐-苯乙烯共聚物以聚乙二醇单甲醚醇解,使酸酐环打开而得到带有聚乙二醇侧链的羧酸型梳状聚合物,其锂盐在加入适当增塑剂成膜后,可作为聚合物单阳离子导体,其结构以非晶态为主,具有较低的玻璃化转变温度及较好的热稳定性,增塑后的室温电导率最高可达10^-6S/cm。此外还研究了聚合物结构、阳离子半径、增塑剂、温度及外加额率等因素对电导率  相似文献   

15.
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.  相似文献   

16.
A model system of single-ion conducting network electrolytes with acrylic backbone, ethylene oxide (EO) side chains, tethered fluorinated anions, and mobile Li cations was designed and synthesized to investigate structure–property relationships. By systematically tuning four molecular variables, one at a time, we investigated how crosslinker length, mol% of crosslinker added, Li:EO ratio and side-chain length affect conductivity, Tg, and modulus. Ionic conductivity at 90 °C varied by two orders of magnitude (and by three orders of magnitude at room temperature) depending on the molecular details, while a 70 °C span in glass transition temperature (Tg) was observed. The range of crosslinking, which can be achieved without impacting conductivity was also elucidated, and the modulus of the electrolyte can be increased by a factor of 8, up to 2.4 MPa, without impacting ion transport. Changes in conductivity due to crosslink density and crosslinker length are fully explained in terms of Tg shifts, while comonomer length cannot be accounted for by such a shift. The best performing network exhibited 10−5 S/cm at high temperature, which is comparable to other single-ion conductors reported in the literature, while the modulus is higher due to crosslinking. Adding 10 wt% propylene carbonate further increased this value to 10−4 S/cm. This work provides insights into the structure–property relationships of solid-state polymer electrolytes, which retain conductivity but can potentially help suppress dendrites.  相似文献   

17.
Oligo(oxyethylene) methacrylate, MEO, has been synthesized as a basic material to design a polymeric solid electrolyte. The homopolymer P(MEO) has a glass transition temperature of -78°C. P(MEO) solubilizes inorganic salts without solvent, and the dissociated ions migrate fast to give very high ionic conductivity, above 10?5 S/cm for ac. Although the ac conductivity is high, the current decreases gradually under dc conditions. This is improved by the design of an ionic conductor using only cations. Poly[oligo(oxyethylene) methacrylate-co-alkali metal methacrylate], P(MEO-MAM), is prepared as an organic solid electrolytes which allows cationic single-ion conduction. The ionic conductivity of the films depends on the electrolyte content, the dissociation energy of the comonomeric electrolytes, and the degree of segmental motion surrounding the ions in the polymer matrix. The ionic conductivity of Li or K is around 10?6 S/cm in these polymeric systems at 80°C. The plot of logarithmic conducticity vs reciprocal absolute temperature is a curved line. The Williams-Landel-Ferry parameters, calculated from the temperature dependence of the conductivity, coincided with theoretical values within a certain range. The single-ion conduction in these films is concluded to be affected considerably by the segmental motion of the matrix polymer. This is also confirmed by the Vogel-Tammann-Fulcher plot.  相似文献   

18.
张丙凯  杨卢奕  李舜宁  潘锋 《电化学》2021,27(3):269-277
固态电解质在室温下表现出非凡的离子导电性,使其有潜力应用于全固态锂离子电池.开发新的高性能固态电解质需要对锂离子传输机理及其规律进行深入研究.本文论述了近期研究中锂离子传输机理方面的研究进展,包括离子传输理论基础的概述;总结Li10GeP2S12、Li7La3Zr2O12和Li1+xAlxTi2-x(PO4)3固态电解...  相似文献   

19.
The advent of solid‐state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate‐based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion‐conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid‐state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium‐metal batteries.  相似文献   

20.
Individual activity coefficients of single-ion species can be achieved by the factorizing of a new concentration function for the mean activity coefficient to the required power applying a purely mathematical method. These single-ion activity coefficients, calculated in this manner, are listed for some aqueous strong electrolytes. The reasons for the magnitude and variation of the activity coefficients as a function of the concentration are, without a doubt, of complex nature. Activity coefficients have their meaning as practical values. In relation to the analytical concentration, the individual activity coefficients represent the macroscopic effectiveness of the single-ion species in solution an easy manner. However, with increasing deviations from Debye–Hückel conditions of an infinitely diluted electrolyte solution, a physically correct interpretation of the macroscopically visible activity coefficient is becoming more and more difficult, if not impossible to find. On the basis of a model of electrostatic interaction, an attempt has been made to create a qualitative interpretation of the individual ion activity coefficients in concentrated aqueous electrolyte solutions which were calculated applying the purely mathematical method by Ferse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号