首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The general theoretical model by Garrett and Joos proposed in 1976 for the estimation of the dilational elasticity of mixed surfactant solutions, and also the theoretical model proposed by Joos for the limiting elasticity of such mixtures, demonstrate quite satisfactory agreement with experimental results obtained from the oscillating bubble shape method for mixtures of a nonionic surfactant and a protein, that is, beta-lactoglobuline and decyl dimethyl phosphine oxide, C10DMPO.  相似文献   

2.
Measurements of the surface dilational elasticity close to equilibrium did not indicate significant distinctions in the surface conformation of different forms of bovine serum albumin (BSA) in a broad pH range. At the same time, the protein denaturation in the surface layer under the influence of guanidine hydrochloride led to strong changes in the kinetic dependencies of the dynamic surface elasticity if the denaturant concentration exceeded a critical value. It was shown that the BSA unfolding at the solution surface occurred at lower denaturant concentrations than in the bulk phase. In the former case, the unfolding resulted in the formation of loops and tails at surface pressures above 12 mN/m. The maximal values of the dynamic surface elasticity almost coincided with the corresponding data for the recently investigated solutions of β-lactoglobulin, thereby indicating a similar unfolding mechanism.  相似文献   

3.
4.
The dilatational viscoelasticity behaviors of water/oil interfaces formed with a crude oil and its distilled fractions diluted in cyclohexane were investigated by means of an oscillating drop tensiometer. The rheological study of the w/o interfaces at different frequencies has shown that the stable w/o emulsions systematically correspond to interfaces which present the rheological characteristics of a 2D gel near its gelation point. The stability of emulsions was found to increase with both the gel strength and the glass transition temperature of the gel. As expected, the indigenous natural surfactants responsible for the formation of the interfacial critical gel have been identified as the heaviest amphiphilic components present in the crude oil; i.e., asphaltenes and resins. Nevertheless, we have shown that such a gel can also form in the absence of asphaltene in the oil phase.  相似文献   

5.
Adsorption layers of n-dodecanol at the water/air interface show phase transitions at low temperatures [Vollhardt, Fainerman, Emrich, J. Phys. Chem. B 104 (2000) 8536]. Using a drop shape technique it is shown that the dilational elasticity disappears in the coexistence region of the adsorption layer. The relaxation time between the condensed and liquid-like surface states is in the sub-second time range.  相似文献   

6.
The adsorbed layers of N,N,N-trimethyl-10-(4-nitrophenoxy)decylammonium bromide (PhiC(10)TAB) and N,N,N('),N(')-tetramethyl-N,N(')-bis[10-(4-nitrophenoxy)decyl]-1,6-hexanediammonium dibromide [(PhiC(10))(2)C(6)] at the air/water interface have been studied by neutron reflection. The coverage of the surfactants was obtained over the concentration range from critical micelle concentration (CMC) to CMC/100. The area per PhiC(10)TAB molecule changes from 50+/-3 to 390+/-60 A(2) over this concentration range and the area per (PhiC(10))(2)C(6) molecule changes from 139+/-3 to 288+/-10 A(2). The overall thicknesses (single uniform layer) of the surfactant layers at CMC are about 19 and 16 A for PhiC(10)TAB and (PhiC(10))(2)C(6) respectively. The distributions of the C(10) chains show that the chains of both surfactants are tilted away from surface normal, with the tilt increasing in the outer part of the layer. The distribution of C(10) chains in (PhiC(10))(2)C(6) is narrower than that in PhiC(10)TAB, indicating that the alkyl chains of (PhiC(10))(2)C(6) are more tilted. For both surfactants, the broad nitrophenoxy distribution may indicate significant positional disorder of the nitrophenoxy groups along the surface normal direction and their intermixing with alkyl chains in the adsorbed layer.  相似文献   

7.
The use of neutron reflectometry to study the structure and composition of surfactant layers adsorbed at the air/water interface is reviewed. A critical assessment of the results from this new technique is made by comparing them with the information available from all other techniques capable of investigating this interface.  相似文献   

8.
The interfacial properties of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs, recently developed and described as promising nanotools for biomedical applications, have been investigated at the air/water interface. These Fe(3)O(4) NPs, capped with catechol-terminated random copolymer brushes of 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA) and oligo(ethylene glycol) methacrylate (OEGMA), with molar fractions of 90% and 10%, respectively, proved to be surface active. Surface tension measurements of aqueous dispersions of the NPs showed that the adsorption of the NPs at the air/water interface is time- and concentration-dependent. These NPs do not behave as classical amphiphiles. Once adsorbed at the air/water interface, they do not exchange with NPs in bulk, but they are trapped at the interface. This means that all NPs from the bulk adsorb to the interface until reaching maximum coverage of the interface, which corresponds to values between 6 × 10(-4) and 8 × 10(-4) mg/cm(2) and a critical equilibrium surface tension of ~47 mN/m. Moreover, Langmuir layers of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs have been investigated by measuring surface pressure-area compression-expansion isotherms and in situ X-ray fluorescence spectra. The compression-expansion isotherms showed a plateau region above a critical surface pressure of ~25 mN/m and a pronounced hysteresis. By using a special one-barrier Langmuir trough equipped with two surface pressure microbalances, we have shown that the NPs are squeezed out from the interface into the aqueous subphase, and they readsorb on the other side of the barrier. The results have been supported by TEM as well as AFM experiments of transferred Langmuir-Schaefer films on solid supports. This study shows the ability of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs to transfer from hydrophilic media (an aqueous solution) to the hydrophobic/hydrophilic interface (air/water interface) and back to the hydrophilic media. This behavior is very promising, opening studies of their ability to cross biological membranes.  相似文献   

9.
In a recent review of this topic [B.C. Garett, Science 303 (2004) 1146] the emphasis was on some recent experiments, in which it was found that some anions accumulate at the air/water interface and not in the bulk, as usually happens to the cations, and on some simulations which explained those positive surface adsorption excesses. Because a large number of these experiments could be explained on the basis of some simple physical models proposed by the authors for the interaction between the ions and the air/water interface [M. Manciu, E. Ruckenstein, Adv. Colloid Interface Sci. 105 (2003) 63; Adv. Colloid Interface Sci. 112 (2004) 109; Langmuir 21 (2005) 11312], those models are reviewed in the present note, the goal being to draw attention to them.  相似文献   

10.
11.
The dynamic and equilibrium surface tensions of C(n)TAB solutions for n = 12, 14, and 16 are studied using ring and bubble pressure tensiometry. Together with respective literature values, including neutron reflectivity and dilational surface rheology measurements, the experimental data are analyzed on the basis of two theoretical models, the Frumkin model and a modified reorientation model that takes into account an intrinsic compressibility of adsorbed surfactant molecules. It turns out that this new reorientation model, earlier applied to nonionic surfactant adsorption layers, is also applicable to ionic surfactants and superior to the Frumkin isotherm. All adsorption properties of one particular surfactant can be described by a single set of model parameters.  相似文献   

12.
Synthetic diacylglycerol lactones (DAG-lactones) have been shown to be effective modulators of critical cellular signaling pathways. The biological activity of these amphiphilic molecules depends in part upon their lipid interactions within the cellular plasma membrane. This study explores the thermodynamic and structural features of DAG-lactone derivatives and their lipid interactions at the air/water interface. Surface-pressure/area isotherms and Brewster angle microscopy revealed the significance of specific side-groups attached to the terminus of a very rigid 4-(2-phenylethynyl)benzoyl chain of the DAG-lactones, which affected both the self-assembly of the molecules and their interactions with phospholipids. The experimental data highlight the formation of different phases within mixed DAG-lactone/phospholipid monolayers and underscore the relationship between the two components in binary mixtures of different mole ratios. Importantly, the results suggest that DAG-lactones are predominantly incorporated within fluid phospholipid phases rather than in the condensed phases that form, for example, by cholesterol. Moreover, the size and charge of the phospholipid headgroups do not seem to affect DAG-lactone interactions with lipids.  相似文献   

13.
We demonstrate the influence of molecular weight and molecular weight asymmetry across an interface on the transient behavior of the interfacial tension. The interfacial tension was measured as a function of time for a range of polymer combinations with a broad range of interfacial properties using a pendant/sessile drop apparatus. The results show that neglecting mutual solubility, assumed to be a reasonable approximation in many cases, very often does not sustain. Instead, a diffuse interface layer develops in time with a corresponding transient interfacial tension. Depending on the specific combination of polymers, the transient interfacial tension is found to increase or decrease with time. The results are interpreted in terms of a recently proposed model [Shi et al., Macromolecules 37, 1591 (2004)], giving relative characteristic diffusion time scales in terms of molecular weight, molecular weight distribution, and viscosities. However, the time scales obtained from this theoretical approach do not give a conclusive trend. Using oscillatory dilatational interfacial experiments the viscoelastic behavior of these diffusive interfaces is demonstrated. The time evolution of the interfacial tension and the dilatational elasticity show the same trend as predicted by the theory of diffuse interfaces, supporting the idea that the polymer combinations under consideration indeed form diffuse interfaces. The dilatational elasticity and the dilatational viscosity show a frequency dependency that is described qualitatively by a simple Fickian diffusion model and quantitatively by a Maxwell model. The characteristic diffusion times provided by the latter show that the systems with thick interfaces (tens of microseconds and more) can be considered as slower diffusive systems compared to the systems with thinner interfaces (a few micrometers in thickness and less) can be considered as fast diffusive systems.  相似文献   

14.
Drop and bubble shape tensiometry experiments are performed at the water/air and water/hexane interfaces in order to get more information about the differences in the adsorption layer structure of mixed protein/surfactant systems. For mixtures of β-lactoglobulin and sodium dodecyl sulphate the adsorption at the water/air interface is essentially a competitive process between protein/surfactant complexes and free surfactant molecules, while the water/oil interface is essentially covered by the complexes.  相似文献   

15.
This review presents the historical development and current status of the theory of the electrical double layer at a liquid/liquid interface. It gives rigorous thermodynamic definitions of all basic concepts related to liquid interfaces and to the electrical double layer. The difference between the surface of a solid electrode and the interface of two immiscible electrolyte solutions (ITIES) is analyzed in connection to their electrical properties. The most important classical relationships for the electrical double layer are presented and critically discussed. The generalized adsorption isotherm is derived. After a short review of the classical Gouy-Chapman and Verwey-Niessen models, more recent developments of the double layer theory are presented. These include effects of variable dielectric permittivity, nonlocal electrostatics, hydration forces, the modified Poisson-Boltzmann equation and the ion-dipole plasma. The relative merits of different theories are estimated by comparing them with computer simulation of the ITIES and electrical double layer. Special attention is given to the structure of ITIES and its variation due to adsorption of ions and amphiphilic molecules.  相似文献   

16.
Chiral interfaces and molecular recognition phenomena are of special interest not only for the understanding of biological recognition processes but also for the potential application in material science. Langmuir monolayers at the air-water interface have successfully been used as simple models to mimic biological phenomena. Recent experimental studies revealed that both chirality and molecular recognition processes of amphiphiles are controlling the features of the nano-aggregates at the air/water interface. The objective of experimental studies has been to gain information about the properties of mesoscopic length scale aggregates obtained on the basis of chiral discrimation effects and the formation of supramolecular entities by molecular recognition of non-surface active species dissolved in the aqueous subphase. Differences in the two-dimensional morphology and lattice structures of the nano-aggregates cannot be explained by macroscopic theories and needed information about the detailed orientation and distance dependence of the intermolecular interaction within the aggregates. First new bottom-up studies have been directed toward understanding the driving forces for the aggregation processes of monolayers. Different types of interactions have been successfully considered using semi-empirical quantum chemical methods. The possibilities of Langmuir-Blodgett (LB) patterning to be an alternative paradigm for large-area patterning with mesostructured features are discussed.  相似文献   

17.
Using combined path integral-molecular dynamics simulation techniques, we analyze electronic solvation at the water/air interface. Superficial electrons present a considerable extent of spatial confinement, somewhat less marked but still comparable to that found in bulk. The characteristics of the interfacial polarization promote an overall structure for the solvated electron-polymer which looks flatter along the direction perpendicular to the interface. Spatial and orientational responses of different slabs in the close vicinity of the interface were also investigated. Solvent configurations obtained from the simulations have been used to analyze electronic excited states and the optical absorption spectrum of superficial electrons. Compared to bulk results, the distribution of bound electronic states at the surface presents similar characteristics, that is, a ground s-state and three, quasi-degenerate, p-like excited states. The reduction of the energy gap between the ground state and the rest of excited states leads to a approximately 0.52 eV red-shift in the position of the absorption maximum.  相似文献   

18.
Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.  相似文献   

19.
We present a study on the initial wetting behaviors of two low molecular weight alkanes, heptane and octane, at the vapor/water interface using both neutron and X-ray reflectometry. Combined X-ray and neutron reflectivity studies data showed that a uniform film, which has never been reported, was formed continuously at 25 degrees C. As the adsorptive deposition continued, each adsorbed film was saturated at a specific equilibrium thickness: 48 and 36 A for deuterated heptane and octane, respectively, and 21 A for hydrogenated octane. The thickness of the adsorbed layer measured by neutron reflectivity is in agreement with that measured using X-ray reflectivity. Our observations of continuous and saturated adsorption behaviors are analyzed qualitatively using a kinetic adsorption model.  相似文献   

20.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号