首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cantilever structures from silicon nitride based composite ceramic materials were produced using laser cutting. A picosecond laser was used to cut two-dimensional meso sized cantilever structures up to 450 μm thickness in conductive and insulating ceramics. A practical experimental based approach was used, where various parameters of the laser cutting process were altered to produce a cut surface with a damage zone of 5–10 μm. The quality of the cut ceramics was investigated by optical and scanning electron microscopy. The results are presented along with the properties of the laser cut surface, including the damage zone, formation of cracks and the reaction products.  相似文献   

2.
In this work, the effect of PZT particle size on the properties of PZT–PC composites was investigated. PZT of various median particle sizes (3.8–620 μm) were used at 50% by volume to produce the composites. The results showed that the dielectric properties of the composites increased marginally with PZT particle size where εr = 176 and 167 for composites with 620 μm and 3.8 μm PZT particle size, respectively. A noticeable increase in d33 values was also found when the particle size was increased where the composite with 620 μm PZT particles size was found to have d33 value of 26 pC/N compared to 17 pC/N for the composite with 3.8 μm PZT particle size. The enhancement in the dielectric and piezoelectric properties was contributed to lesser contacting surfaces between the cement matrix and the PZT particles.  相似文献   

3.
《Optik》2013,124(16):2373-2375
We demonstrate a new device concept for wavelength division demultiplexing based on planar photonic crystal waveguides. The filtering of wavelength channels is realized by shifting the cutoff frequency of the fundamental photonic bandgap mode in consecutive sections of the waveguide. The shift is realized by modifying the size of the border holes.The proposed demultiplexer has an area equal to (16.5 μm × 6.5 μm) and thus it is verified that this structure is very small and can be integrated easily into optical integrated circuits with nanophotonic technologies. The output wavelengths of designed structure can be tuned for communication applications, around 1550 nm. The wavelengths of demultiplexer channels are λ1 = 1.590 μm, λ2 = 1.566 μm, λ3 = 1.525 μm, λ4 = 1.510 μm, λ5 = 1.484 μm, λ6 = 1.450 μm, λ7 = 1.400 μm respectively. Designs offering improvement of number of the separate wavelengths (seven), miniaturization of the structure (107.25 μm2) is our aim in this work.In our structure, we consider that the 2D triangular lattice photonic crystal is composed of air holes surrounded by dielectric. Its parameters are: radius of holes (r = 0.130 μm), lattice constant (a = 0.380 μm), and index of membrane (n = 3.181:InP). The numerical model used to simulate the structure of the demultiplexer is based on the finite difference time domain (FDTD).  相似文献   

4.
A Tm3+-doped silicate glass (SiO2–CaO–Na2O–K2O) with good thermal stability is prepared by the melt-quenching method. Intense 1.8 μm emission is obtained when pumped by an 808 nm laser diode. Based on the measured absorption spectra, radiative properties are predicted using Judd–Ofelt theory and Judd–Ofelt parameters Ωλ (λ=2, 4, 6), as well as absorption and emission cross-sections are calculated and analyzed. The difference between the measured Tm3+:3F4 lifetime and the calculated lifetime is also discussed. The emission property together with good thermal property indicates that Tm3+-doped silicate glass is a potential kind of laser glass for efficient 2 μm laser.  相似文献   

5.
Optical properties of a Ho-doped LaF3 single crystal have been detailed investigated as a promising material for 2 μm and 2.9 μm lasers for the first time. Judd–Ofelt theory was applied to analyze the absorption spectrum to determine the J–O intensity parameters Ωt(t=2,4,6), based on which the emission probabilities, branching ratio and radiative lifetime for the as-grown crystal were all calculated. The stimulated emission cross-sections of the 5I7  5I8 and 5I6  5I7 transitions were obtained by using the Fuchtbauer–Ladenburg method. The gain cross-section for 2 μm emission becomes positive once the population inversion level reaches 30%. The Ho:LaF3 crystal shows long fluorescence lifetime of 5I7 manifold (25.81 ms) as well as 5I6 manifold (10.37 ms) compared with other Ho3+-doped crystals. It can be proposed that the Ho:LaF3 crystal may be a promising material for 2 μm and 2.9 μm laser applications.  相似文献   

6.
This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855–930 W and 4.50–4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800–840 W and increased to 4.75–5.37 m/min, respectively, to obtain stronger and better welds.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(5):1707-1713
A novel template-free sonochemical synthesis technique was used to prepare NiO microspheres combined with calcination of NiO2.45C0.74N0.25H2.90 precursor at 500 °C. The NiO microspheres samples were systematically investigated by the thermograviometric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fourier-transformed infrared spectroscopy (FT-IR), Brunnauer–Emmett–Teller (BET) nitrogen adsorption–desorption isotherms, laser particle size analyzer, and ultraviolet–visible spectroscopy (UV–Vis). The morphology of the precursor was retained even after the calcination process, and exhibited hierarchically porous sphericity. The morphology changed over the ultrasonic radiation time, and the shortest reaction time was 70 min, which was much less than 4 h for the mechanical stirring process. The mechanical stirring was difficult to form the complete hierarchically porous microsphere structure. The BET specific surface area and the median diameter of the hierarchically porous NiO microspheres were 103.20 m2/g and 3.436 μm, respectively. The synthesized NiO microspheres were mesoporous materials with a high fraction of macropores. The pores were resulted from the intergranular accumulation. The ultraviolet absorption spectrum showed a broad emission at the center of 475 nm, and the band gap energy was estimated to be 3.63 eV.  相似文献   

8.
The goal of this study is to achieve absolute line intensities for the strong 5.7 and 3.6 μm bands of formaldehyde and to generate, for both spectral regions, an accurate list of line positions and intensities. Both bands are now used for the infrared measurements of this molecule in the atmosphere. However, in the common access spectroscopic databases there exists, up to now, no line parameters for the 5.7 μm region, while, at 3.6 μm, the quality of the line parameters is quite unsatisfactory. High-resolution Fourier transform spectra were recorded for the whole 1600–3200 cm?1 spectral range and for different path-length-pressure products conditions. Using these spectra, a large set of H2CO individual line intensities was measured simultaneously in both the 5.7 and 3.6 μm spectral regions. From this set of experimental line strength which involve, at 5.7 μm the ν2 band and, at 3.6 μm, the ν1 and ν5 bands together with nine dark bands, it has been possible to derive a consistent set of line intensity parameters for both the 5.7 and 3.6 μm spectral regions. These parameters were used to generate a line list in both regions. For this task, we used the line positions generated in [Margulés L, Perrin A, Janeckovà R, Bailleux S, Endres CP, Giesen TF, et al. Can J Phys, accepted] and [Perrin A, Valentin A, Daumont L, J Mol Struct 2006;780–782:28–42] for the 5.7 and 3.6 μm, respectively. The calculated band intensities derived for the 5.7 and 3.6 μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements. It has to be mentioned that intensities in the 3.6 μm achieved in this work are on the average about 28% stronger than those quoted in the HITRAN or GEISA databases. Finally, at 3.6 μm the quality of the intensities was significantly improved even on the relative scale, as compared to our previous study performed in 2006.  相似文献   

9.
This work reports the observation of emissions at 2.9 μm, 1.8 μm and 1.47 μm from Dy3+/Tm3+ codoped fluorophosphate glass upon excitation of a conventional 800 nm laser diode. Judd–Ofelt intensity parameters and radiative properties of Dy3+ ions in present glasses were calculated using the Judd–Ofelt theory. The mechanism and microparameters of energy transfer processes were investigated based on photoluminescence performance and lifetime measurements. The Dy3+/Tm3+ codoped fluorophosphate glass possessing advantageous spectroscopic characteristics as well as excellent thermal stability is a promising candidate for an efficient 2.9 μm laser.  相似文献   

10.
We have designed slow light photonic crystal waveguides operating in a low loss and constant dispersion window of Δλ = 2 nm around λ = 1565 nm with a group index of ng = 60. We experimentally demonstrate a relatively low propagation loss, of 130 dB/cm, for waveguides up to 800 μm in length. This result is particularly remarkable given that the waveguides were written on an electron-beam lithography tool with a writefield of 100 μm that exhibits stitching errors of typically 10–50 nm. We reduced the impact of these stitching errors by introducing “slow–fast–slow” mode conversion interfaces and show that these interfaces reduce the loss from 320 dB/cm to 130 dB/cm at ng = 60. This significant improvement highlights the importance of the slow–fast–slow method and shows that high performance slow light waveguides can be realised with lengths much longer than the writing field of a given e-beam lithography tool.  相似文献   

11.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

12.
The steady-state oxygen permeation through dense La2NiO4 + δ ceramics, limited by both surface exchange and bulk ambipolar conduction, can be increased by deposition of porous layers onto the membrane surfaces. This makes it possible, in particular, to analyze the interfacial exchange kinetics by numerical modelling using experimental data on the oxygen fluxes and equilibrium relationships between the oxygen chemical potential, nonstoichiometry and total conductivity. The simulations showed that the role of exchange limitations increases on reducing oxygen pressure, and becomes critical at relatively large chemical potential gradients important for practical applications. The calculated oxygen diffusion coefficients in La2NiO4 + δ are in a good agreement with literature. In order to enhance membrane performance, the multilayer ceramics with different architecture combining dense and porous components were prepared via tape-casting and tested. The maximum oxygen fluxes were observed in the case when one dense layer, ~ 60 μm in thickness, is sandwiched between relatively thin (< 150 μm) porous layers. Whilst the permeability of such membranes is still affected by surface-exchange kinetics, increasing thickness of the porous supporting components leads to gas diffusion limitations.  相似文献   

13.
An electrohydrodynamic (EHD) atomization from a point-to-plate system, with a wet porous point as a corona electrode, has been studied. And the atomized water droplets from the wet porous point, as well as the water droplet traces, the water droplet charge-to-mass ratios, and the water droplet number concentrations, were investigated. It was observed that the wet porous point can atomize abundant amounts of water droplet, 2.8, 2.6 and 2.2 mg/min for negative, AC and positive corona, respectively. The migrated water droplet traces were observed. The positive wet porous point atomized very fine water droplets than those obtained with the negative wet porous point. Moreover, the water droplets atomized from the AC corona showed granular-like larger traces. A weak corona discharge can atomize water droplets very effectively. On the other hand, an intensive corona discharge can eject more water droplets. As a result with the wet porous point, the maximum corona-current-based and corona-power-based water droplet atomization yields of YC = 3.34, 3.32 and 3.25 μg/μAs and YP = 0.35, 0.40 and 0.27 mg/Ws have been obtained for the negative, AC and positive corona discharges.  相似文献   

14.
2.84 μm luminescence with a bandwidth of 213 nm is obtained in Dy3+ doped (ZrF4–BaF2–LaF3–AlF3–YF3) ZBLAY glass. Three intensity parameters and radiative properties have been determined from the absorption spectrum based on the Judd–Ofelt theory. The 2.84 μm emission characteristics and energy transfer mechanism upon excitation of a conventional 808 nm laser diode are investigated. The prepared Dy3+ doped ZBLAY glass possessing high predicted spontaneous transition probability (45.92 s?1) along with large calculated emission cross section (1.17×10?20 cm2) has potential applications in 2.8 μm laser.  相似文献   

15.
The Zn/Er/Yb:LiNbO3 and Er/Yb:LiNbO3 crystals were grown by the Czochralski technique. The laser characteristics of 1.54 μm emission were predicted based on the Judd–Ofelt theory, and the intensity parameters Ωt (Ω2=7.23×10?20 cm2, Ω4=3.15×10?20 cm2 and Ω6=1.43×10?20 cm2) were obtained. The stimulated emission cross sections (σem) at 1.54 μm emission in Zn/Er/Yb:LiNbO3 were calculated based on the McCumber theory and the Füchtbauer–Ladenburg theory. The gain cross section spectrum of Zn/Er/Yb:LiNbO3 crystal was also investigated. Under 980 nm excitation, a lenghthening lifetime of 1.54 μm emission and an enhancement of green upconversion emission were observed for Zn/Er/Yb:LiNbO3 crystal. The studies on the power pump dependence and the upconversion mechanism suggested that both green and red upconversion emissions were populated via the three-photon process, and Zn2+ ion tridoping increases the probability of cross relaxation process between the two neighboring Er3+ ions.  相似文献   

16.
Trivalent neodymium doped multi-component lead borate titanate aluminumfluoride (LBTAFNd) glasses were prepared and characterized as a function of Nd3+ ions concentration through optical absorption, NIR luminescence and decay measurements. The intensity (Ω2,4,6) and other radiative parameters were determined within the frame work of Judd–Ofelt theory. The intensities of absorption bands were expressed in terms of experimental oscillator strengths. Reasonably small root mean square deviation of ±0.384×10?6 obtained between the experimental and calculated oscillator strengths indicates the validity of intensity parameters. Upon 805 nm laser excitation, the NIR emissions at 0.92 μm (4F3/24I9/2), 1.07 μm (4F3/24I11/2) and 1.35 μm (4F3/24I13/2) were observed. The spectroscopic quality factor has been determined from the Ω4 and Ω6 intensity parameters as well as the intensities of emission bands centered at 1.07 and 1.35 μm. The decay curves of the 4F3/2 excited state were recorded by monitoring the emission and excitation wavelengths at 1.07 μm and 805 nm, respectively. The decay curves exhibit single exponential behavior for all the glasses. The laser characteristic parameters of 4F3/24I11/2 (1.07 μm) transition were determined and compared with other reported glasses.  相似文献   

17.
Radiative shock waves propagating in xenon at a low pressure have been produced using 60 joules of iodine laser (λ = 1.315 μm) at PALS center. The shocks have been probed by XUV imaging using a Zn X-raylaser (λ = 21 nm) generated with a 20-ns delay after the shock creating pulse. Auxiliary high-speed silicon diodes allowed performing space- and time-resolved measurement of plasma self-emission in the visible and XUV. The results show the generation of a shock wave propagating at 60 km/s preceded by a radiative precursor. This demonstrates the feasibility of radiative shock generation using high power infrared lasers and the use of XRL backlighting as a suitable diagnostic for shock imaging.  相似文献   

18.
This article reports the parameters and characteristics of the new type of HgCdTe buried photodiodes operated at near-room temperature (T=200–300 K) in long wavelength infrared spectral range. The liquid phase epitaxy (LPE) Hg1−xCdxTe (x=0.16–0.20) layers were grown on holes etched in (1 0 0) CdZnTe substrate. Prior to layer deposition, the CdZnTe substrate has been etched to form the bars on 30 μm centers and 20-μm depth. Next, 20-μm thick HgCdTe epitaxial layer has been grown from Te-rich solution. The type of conductivity was controlled by deliberately doping with indium (n-type) and Sb (p-type). The Nomarski microscopy showed that the surface of specially prepared layers was flat and the composition of layers, measured by Fourier transform infrared microscopy, was homogenous. Samples were cleaved and examined in cross section by scanning electron microscopy. Finally, serial connected multi-junction photodiodes have been fabricated. It is shown that LPE can be used to realise advanced bandgap engineered multi-junction structures. This conclusion is supported by device quality characteristics: spectral response and detectivity.  相似文献   

19.
A detailed study of the fluorescence radiative dynamics and energy transfer processes between Er and Tm ions in the Er3+/Tm3+ doped fluoride glass is reported. The fluorescence properties of 2.7 μm emission, other infrared and visible emissions are investigated under different selective laser excitations. Three Judd–Ofelt intensity parameters, energy transfer microparameters and efficiency have been determined and discussed. It is found that present Er3+/Tm3+ doped fluoride glass possesses large calculated emission cross section (8.98×10–21 cm2) around 2.7 μm. The more suitable pumping scheme for laser applications at 2.7 μm laser is 980 nm excitation for Er3+/Tm3+ doped fluoride glass.  相似文献   

20.
Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The radiation equations are coupled to a diffusion equation for the matter temperature. We are interested in modeling heating and cooling of silica (SiO2), at possibly rapid rates. Hence, in contrast to related work, we retain the temporal derivative of the radiation field. We derive boundary conditions at a planar air–silica interface taking account of reflectivities obtained from the Fresnel relations that include absorption. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO2 laser, λ = 10.59 μm. In 2D, a laser beam (Gaussian profile, r0 = 0.5 mm for 1/e decay) shines on a disk (radius = 0.4, thickness = 0.4 cm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号