首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

2.
Micro- and nano-scale crystalline indium-tin-oxide (c-ITO) patterns fabricated from amorphous ITO (a-ITO) thin films on a glass substrate using a (low NA 0.26) femtosecond laser pulse that is not tightly focused are demonstrated. Different types of c-ITO patterns are obtained by controlling the laser pulse energies and pulse repetition rate of a femtosecond laser beam at a wavelength of 1064 nm: periodic micro c-ITO dots with diameters of ~1.4 μm, two parallel c-ITO patterns with/without periodic-like glass nanostructures at a laser scanning path and nano-scale c-ITO line patterns with a line width ~900 nm, i.e. ~1/8 of the focused beam׳s diameter (7 μm at 1/e2).  相似文献   

3.
A LuAG shaped rod crystal, doped with Yb3+, has been grown by μ-PD technique. The crystal diameter was about 3 mm and the length around 130 mm. A complete spectroscopic investigation in the temperature range 10–300 K is reported and data has been utilized to model the laser behavior. In the laser experiment the Yb:LuAG sample was placed in an X cavity and pumped longitudinally obtaining an efficient CW laser emission. The Yb:LuAG laser yielded a maximum output power of 23 mW with a slope efficiency of 32% and a threshold around 35 mW, at lasing wavelength of 1030 nm. No significant depolarization effects were observed, indicating a crystal growth with negligible stress. The output beam profile was investigated, yielding M2  1.0 in both directions, further confirming the good optical quality of the sample.  相似文献   

4.
The three-dimensional real-space observation of photonic nanojet in different microspheres illuminated by a laser is reported. The finite-difference time-domain technique is used to perform the three-dimensional numerical simulation for the dielectric microspheres. The key parameters of photonic nanojet are measured by using a scanning optical microscope system. We reconstruct the three-dimensional real-space photonic nanojets from the collected stack of scanning images for polystyrene microspheres of 3 μm, 5 μm, and 8 μm diameters deposited on a glass substrate. Experimental results are compared to calculations and are found in good agreement with simulation results. The full width at half-maximum of the nanojet is 331 nm for a 3 μm microsphere at an incident wavelength of 633 nm. Our investigations show that photonic nanojets can be efficiently imaged by a microsphere and straightforwardly extended to rapidly distinguish the nano-objects in the far-field optical system.  相似文献   

5.
A photonic-crystal tunable 1.55 μm laser diode is fitted with a wavelength monitor on its rear side. The 250-μm long laser based on a coupled-cavity design has approximately 15 nm tunability. The wavelength monitor collects and differentially feeds two-photodetecting areas, thanks to a mode conversion to a higher-order mode (a mini-stopband), followed by tunneling through a thin clad. The layout is numerically optimized to minimize unwanted reflections. Electrical cross-talk was prevented through guard rings and trenches. The correlation between wavelength and the monitor photocurrent ratio demonstrates a 10–20 GHz stabilization capability, or a 15 nm monitoring range.  相似文献   

6.
A 1.94 μm Tm-doped fiber laser pumped tunable single-longitudinal-mode Ho:YLF laser with double etalons was reported for the first time. The maximum single-longitudinal-mode output power of 345 mW at 2051.6 nm was achieved at the absorbed pump power of 11.9 W, corresponding to a slope efficiency of 5.5% and an optical conversion efficiency of 2.9%. By regulating the angle of the F–P etalons, the output wavelength of the laser can be tuned from 2051.6 nm to 2063.3 nm. The single-longitude-mode Ho:YLF laser operating at 2 μm can be used as the seed laser source of coherent Doppler lidar, differential absorption lidar and so on.  相似文献   

7.
Erbium-ytterbium co-doped fiber amplifier with wavelength-tuned Yb-band loop resonator is presented. The amplified spontaneous emission (ASE) from Yb ions is utilized to stimulate a laser emission at several wavelengths from the 1 μm band in the 1550 nm amplifier. The wavelength of this lasing is tuned by introducing a fiber Bragg grating (FBG). The results show, that the overall efficiency of the amplifier at nominal 1550 nm wavelength can be increased by introducing a feedback loop with 1040 nm and 1050 nm FBG. This loop also protects the Er/Yb amplifier from parasitic lasing at 1 μm and allows significant output power scaling without risk of self-pulsing.  相似文献   

8.
We report the fabrication of the anti-reflective micro/nano-structure on absorbing layer of GaAs solar cell surface using an efficient approach based on one-step femtosecond laser irradiation. Morphology of the microstructures and reflectance of the cell irradiated are characterized with SEM and spectrometer to analyze the influence of laser processing parameters on the change of microstructures induced and the reflectance. It has been found that the rectangle grating micro/nano-structure with a period of 700 nm and width of 600 nm is obtained neatly with laser pulse energy of 30.5 μJ(pulse duration is 130 fs, center wavelength is 800 nm, scanning speed is 2.2 mm/s and spot diameter is 22 µm). Reflectance has been suppressed to 23.6% with rectangle structure from 33% of planar cell. In addition, simulation using a finite-difference-time domain(FDTD) method results show that the rectangle grating micro/nano-structure can effectively suppress the reflection within large wavelength ranges.  相似文献   

9.
We present an highly efficient all-fiber compact supercontinuum source that exhibits a nearly flat spectrum from 1.1 μm to 2.1 μm. This broadband infrared optical source is made-up of a highly non-linear fiber pumped by a 1.55 μm self-Q-switched Er-Brillouin nanosecond pulsed fiber laser, which in turn is pumped by a low-power 1480 nm laser diode. In this work we highlight the great potential of highly non-linear fiber for supercontinuum generation with respect to conventional dispersion-shifted fiber by demonstrating a significant 10 dB power enhancement in the short wavelength side of the supercontinuum.  相似文献   

10.
M.S. Alias  S.M. Mitani  F. Maskuriy 《Optik》2012,123(12):1051-1055
Comprehensive analysis of GaInNAs edge-emitting laser operating near 1300 nm wavelength are made to underline the behavioural features of the proposed laser device, in view of the analytical investigation for various material and device electrical-optical parameters analysis such as band diagram, material gain, quantum well emission wavelength, optical wave and mode profiles, light-current-voltage characteristic, output mode spectrum, current distribution and far-field profile. The material analysis indicates that a high quality GaInNAs active region is designed, where high material gain and photoluminescence wavelength near 1.3 μm are achieved. The device obtains low threshold current operation with lasing emission around 1.285 μm.  相似文献   

11.
The laser properties of 1.3 μm spectral region in Nd:YAG crystal and their simultaneous dual wavelength threshold condition are investigated. Three types of high power 1.3-μm Nd:YAG quasi continuous wave (QCW) lasers, which operate at 1.319 μm or 1.338 μm single wavelength, 1.319 μm and 1.338 μm simultaneous dual wavelength, are achieved with a maximum average output power of 138 W, 132 W and 120 W, respectively.  相似文献   

12.
We present the experimental results of a 1083 nm fiber amplifier tandem pumped by 1030 nm fiber laser. The output characteristics of the tandem pumped amplifier with cladding-pump and core-pump schemes are both investigated. The 1083 nm signal laser has not been efficiently amplified when cladding-pumped by 1030 nm laser for the weak absorption of the gain fiber. The core-pump scheme works well with the amplifier. The output properties with different gain fiber length are experimentally investigated. The maximum output power is 2.4 W with power conversion efficiency of 60%.  相似文献   

13.
Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 µm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 µm/s – more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.  相似文献   

14.
In recent years multi-spectral device is steadily growing popularity. Multi-spectral antireflection coating effective in visible region for sighting system, laser wavelength for ranging and MWIR region for thermal system can use common objective/receiver optics highly useful for state of art thermal instrumentation. In this paper, design and fabrication of antireflection coating simultaneously effective in visible region (450–650 nm), Eye safe laser wave length (1540 nm) and MWIR region (3.6–4.9 μm) has been reported. Comprehensive search method of design was used and the number of layers in the design was optimised with lowest evaluated merit function studied with respect to various layers. Finally eight-layer design stack was established using hafnium oxide as high index layer and silicon-di-oxide as low index coating material combination. The multilayer stack had been fabricated by using electron beam gun evaporation system in Symphony 9 vacuum coating unit. During layer deposition the substrate was irradiated with End-Hall ion gun. The evaporation was carried out in presence of oxygen and layer thicknesses were measured with crystal monitor. The result achieved for the antireflection coating was 85% average transmission from 450 to 650 nm in visible region, 95% transmission at 1540 nm and 96% average transmission from 3.6 to 4.9 μm in MWIR region.  相似文献   

15.
Modification of the metal complexes by the laser irradiation with different wavelength and beam quality is investigated. After irradiation, the structure of macromolecular metal complexes are changed, and the reducing metal crystal nucleus emerges.. In this paper, the surface of the metal complexes is irradiated by laser scanning with wavelengths of 532 nm, 1064 nm and 10.6 μm.The 1064nm laser performs the most favorably by using Scanning Electron Microscope and X-ray Photoelectron Spectroscopy. Because the change of chemical composition percentage and variation of metal chemical valence state is most evident. Furthermore, mode selection of laser cavity by adding a pinhole aperture further improves the surface topography, fineness of modification and reducing ability. The appropriate wavelength and mode selection should be utilized together with other influencing laser parameters to achieve the most favorable consequence of metal complexes surface modification.  相似文献   

16.
We report on a LD-end-pumped passively Q-switched Nd:YAG ceramic laser by using a novel single wall carbon nanotube saturable absorber (SWCNT-SA). The SWCNT wafer was fabricated by electric Arc discharge method on quartz substrate with absorption wavelength of 1064 nm. We firstly investigated the continuous wave (CW) laser performance and scattering properties of Nd:YAG ceramic sample. For the case of passively Q-switched operation, a maximum output power of 376 mW was obtained at an incident pump power of 8.68 W at 808 nm, corresponding to an optical–optical conversion efficiency of 4.3%. The repetition rate as the increase of pump power varied from 14 to 95 kHz. The minimum pulse duration of 1.2 μs and maximum pulse energy of 4.5 μJ was generated at a repetition rate of 31.8 kHz.  相似文献   

17.
Laser cutting characteristics including power level and cutting gas pressure are investigated in order to obtain an optimum kerf width. The kerf width is investigated for a laser power range of 50–170 W and a gas pressure of 1–6 bar for steel and mild steel materials. Variation of sample thickness, material type, gas pressure and laser power on the average cut width and slot quality are investigated. Optimum conditions for the steel and mild steel materials with a thickness range of 1–2 mm are obtained. The optimum condition for the steel cutting results in a minimum average kerf width of 0.2 mm at a laser power of 67 W, cutting rate of 7.1 mm/s and an oxygen pressure of 4 bar. A similar investigation for the mild steel cutting results in a minimum average kerf width of 0.3 mm at the same laser power of 67 W, cutting rate of 9.5 mm/s, and an oxygen pressure of 1 bar. The experimental average kerf is about 0.3 mm, which is approximately equal to the estimated focused beam diameter of 0.27 mm for our focusing lens (f=4 cm and 100 W power). This beam size leads to a laser intensity of about 1.74×109 W/m2 at the workpiece surface. The estimated cutting rate from theoretical calculation is about 8.07 mm/s (1.0 mm thickness and 100 W power), which agrees with the experimental results that is 7.1 mm/s for 1.0 mm thickness of mild steel at the laser power of 88 W.  相似文献   

18.
Principal role of substrate types on the nonlinear optical properties of Au NP was investigated. Third harmonic generation (THG) studies were carried out for Au NP deposited on the Al-doped ZnO (AuNP/AZO) and Ga-doped ZnO (AuNP/GZO) substrates at fundamental wavelength of 20 ns Er:glass laser (generating at 1540 nm wavelength) during photostimulation by the 532 nm 15 ns laser pulses. Sizes of Au NP were 5 nm, 10 nm, 20 nm, and 30 nm. The output signal was registered at 513 nm. The photoinduced power density was increased from 0 up to 800 MW/cm2. So in our work we explore the role of the substrate on the optically stimulated non-linear optical properties during simultaneous photo stimulation near the inter-band transition. The results were studied depending on the type of substrate and the sizes of the deposited nanoparticles. The analysis was done within a framework of interaction between the photoinduced light and SPR wavelengths. Control of the photoinduced temperature was done.  相似文献   

19.
We present a 2.09 μm single-longitudinal-mode sandwich-type YAG/Ho:YAG/YAG ceramic laser pumped by a Tm-doped fiber laser for the first time. A pair of F-P etalons was used to achieve tunable single-longitudinal-mode operation. The maximum single-longitudinal-mode output power of 530 mW at 2091.4 nm was obtained with an absorbed pump power of 8.06 W, corresponding to an optical conversion efficiency of 6.6% and a slope efficiency of 12.7%. Wavelength tunable was achieved by tuning the angle of etalons and the wavelength could be tuned from 2091.1 nm to 2092.1 nm, corresponding to a tuning frequency of 68 GHz. The M2 factor was measured to be 1.23.  相似文献   

20.
Efficiency as high as 26% is obtained for generation of mid-infrared radiation at 6.04 μm by frequency doubling of ammonia laser emission at 12.08 μm in a 15 mm long type-I cut AgGaSe2 crystal. The NH3 laser used for this work is optically pumped by a commercial TEA CO2 laser operating on 9.22 μm and produces pulsed output of ∼210 mJ with a duration of ∼200 ns at 12.08 μm. The generated radiation at 6.04 μm is separated out from the residual radiation at 12.08 μm by exploiting the principle of polarization dependent diffraction of reflection grating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号