首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and morphology of polypropylene/conductive graphite (PP/CG) composites were studied by wide angle X-ray diffraction, small-angle X-ray scattering and scanning electron microscopy. An effect of graphite on the crystallization behavior was observed and the opposite influences of enhanced thermal conductivity and hinder of chain mobility on the formation of the γ-phase of PP were discussed.  相似文献   

2.
Polypropylene membranes modified with natural and organically modified montmorillonite clays were prepared. The permeability, diffusivity and solubility of helium, oxygen and nitrogen were determined for the unfilled and filled membranes over the temperature range 25-65 °C. Physical properties of polypropylene membranes were investigated using X-ray diffraction, thermogravimetric analyser, tensile testing and differential scanning calorimetry. The results showed that the filled membranes exhibit lower gas permeability compared to the unfilled polypropylene membrane. For helium, a reduced diffusivity is mainly responsible for the reduction in the permeability, in contrast, for nitrogen and oxygen, both diffusivity and solubility were reduced by the presence of fillers. The X-ray diffraction spectra showed that the incorporation of the unmodified and modified clay did not affect the crystallographic nature of polypropylene.  相似文献   

3.
The electrochemistry of monoclinic and tetragonal vanadium-doped zirconias (VZrO2), prepared from gel precursors with vanadium loadings ranging from 0.5 to 15 mol%, has been studied using abrasive-conditioned graphite/polyester composite electrodes immersed in aqueous HCl and HClO4 solutions. Isolated vanadium centers form a solid solution in the zirconia lattice with a solubility limit close to 5 mol%. Above 5 mol%, finely dispersed V2O5 is formed. Vanadium centers located at the boundary sites of the zirconia lattice display successive one-electron transfer processes near to +0.25 and +0.10 V vs. SCE, whereas finely dispersed V2O5 yields three successive reduction processes at +0.46, +0.30, and +0.16 V vs. SCE. Electrochemical data indicate the presence of both V5+ and V4+ centers in the lattice of monoclinic and tetragonal zirconias, the V5+/V4+ ratio decreasing as the vanadium loading increases. Electronic Publication  相似文献   

4.
Bentonite filled polypropylene composites were prepared using a Polydrive Thermo Haake, internal mixer at 180 °C and at 50 rpm of rotor speed. Effect of compatibilisers on mechanical, thermal, water absorption and morphological properties of bentonite filled polypropylene composites was investigated. Two types of compatibilisers namely, palm oil fatty acid additive (POFA) and polypropylene grafted-maleic anhydride (PPMAH) have been used in this study. The mixing of the composites improved with the addition of POFA. The impact strength and elongation at break increased with the presence of both compatibilisers whilst, tensile strength and Young's modulus improved only with addition of PPMAH. Morphological investigation using SEM revealed that the improvement in impact strength and elongation at break was due to enhancement of the interfacial adhesion between bentonite and PP. The thermal stability of bentonite filled PP improved with the incorporation of POFA and PPMAH. Less percentage of water absorption has been observed in PP-bentonite system with PPMAH.  相似文献   

5.
Water barrier properties (i.e., water resistance) of poly(styrene-co-butyl acrylate)/graphite oxide (poly(St-co-BA)/GO) nanocomposites were studied using hydrophobicity and permeability analysis. Poly(St-co-BA)/GO nanocomposite latices were obtained using the miniemulsion polymerization technique. The hydrophobicity of the synthesized nanocomposites was studied using contact angle measurements, while water permeability was obtained by measuring the moisture vapor transmission rate (MVTR). The nanocomposites were treated with hydrazine hydrate in order to reduce the functional groups on graphite oxide (GO). The focus was on determining the effect of reducing the functional groups of GO on the water barrier properties of its polymer nanocomposites. In general, the nanolayered graphene platelets in GO and RGO resulted in lower water permeation in the final films compared to pure polymer. However, results showed that nanocomposites containing the reduced-GO (RGO) had better water resistance and barrier properties compared to those made with unreduced GO (i.e., as-prepared GO). The nanocomposites containing RGO had higher hydrophobicity and lower water uptake and MVTR compared to those made with as-prepared GO, resulting in better barrier performance. This was attributed to the high hydrophobic nature of the RGO, which exhibited lower water solubility that resulted in films with lower MVTR values compared to those made with as-prepared GO.  相似文献   

6.
Multi-walled carbon nanotubes/polypropylene composites were compounded using a twin-screw extruder. Here, nanotubes with different lengths, i.e. 1-2 μm and 5-15 μm, respectively, were applied at a constant volume content of 1%. Notched Charpy impact tests showed that toughening effects of nanotubes depended highly on testing temperatures. The impact resistance was notably enhanced at a temperature above the glass transition temperature of matrix. Longer nanotubes performed more effective in toughening compared to the shorter ones. The increment of impact resistance of nanotube-filled polypropylene was considered due to enhanced load-carrying capability and much-increased deformation of matrix. SEM fractography further revealed the toughening mechanisms in a micro-scale. The impact energy was improved via nanotube breakage and pullout, which likely led to a series of energy consuming actions. In addition, the smaller spherulite size induced by nanotubes would be favourable to the impact resistance partially.  相似文献   

7.
郭朝霞  于建 《高分子科学》2015,33(10):1380-1388
The diffusion and subsequent copolymerization of styrene(St)/butyl methacrylate(BMA) mixed monomers in i PP pellets to prepare copolymer nanoblends were investigated. The diffusion step was carried out at 90 ℃ for 2 h in water, and the copolymerization was initiated by the addition of BPO with the aid of a small amount of St. The diametrical distributions of both St and BMA units and their ratio St/BMA were investigated by micro FTIR. Both St and BMA can diffuse into the centres of i PP pellets. The diametrical distribution of St/BMA ratio is constant in all the copolymer blends. The copolymer composition depends on the comonomer feed ratio. The molecular weights of the copolymers were measured by GPC after extraction with tetrahydrofuran. The phase morphology of the copolymer blends was investigated by FESEM, showing the average particle sizes of less than 100 nm. DSC measurements show that the diffusion and subsequent copolymerization of St/BMA monomers only occur in the amorphous regions of i PP pellets.  相似文献   

8.
Graphite nanosheets (NanoG) were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. Nanocomposites of poly(methyl methacrylate) (PMMA) with NanoG were prepared via an in situ polymerization of MMA in the presence of NanoG with the aid of sonication. The nanocomposites were then dispersed with chloroform (CHCl3) and casted on glass slides to form conducting films. The percolation threshold of PMMA/NanoG conducting films at room temperature was as low as 0.31 vol%, much lower than that of the composites filled with conventional graphite particles. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area diffraction (SAD) and etc. were used to characterize the structure of the graphite nanosheets and the nanocomposites. Results showed that the high-aspect-ratio structure of graphite nanosheets played an important role in forming conducting network in PMMA matrix. The conducting behavior of the composite was interpreted by percolation theory.  相似文献   

9.
Due to the economic importance of polypropylene (PP) and polyethylene terephthalate (PET), and the large amount of composites made with PP matrix and recycled PET as reinforcing material; an investigation was performed regarding the mechanical and thermal behavior of PP composites containing recycled polyethylene terephthalate fibers (rPET). Interfacial adhesion between the two materials was achieved by adding a compatibilizer, maleic anhydride grafted polypropylene, PP-g-MA. Mechanical behavior was assessed by tensile, flexural, impact and fatigue tests, and thermal behavior by HDT (Heat Deflection Temperature). Fractured surfaces and fiber were investigated by scanning electron microscopy. Multiple regression statistical analysis was performed to interpret interaction effects of the variables. Tensile strength, tensile modulus, flexural strength, flexural modulus and HDT increased after rPET fiber incorporation while strain at break, impact strength and fatigue life decreased. Addition of compatibilizer increased tensile strength, flexural strength and flexural modulus, fatigue life and HDT while tensile modulus, strain at break and impact strength decreased. However, at low fiber content, the impact strength increased, probably due to nucleation effects on PP.  相似文献   

10.
Nanoindentation using atomic force microscopy (AFM) was conducted to investigate the affect of accelerated ultraviolet (UV) and thermal degradation on the mechanical properties of polypropylene fibers. The affect of degradation on Young’s modulus across fiber cross-sections was investigated with progressive nanoindentation from the surface to the center of the fiber. UV degradation initially increases the Young’s modulus both at the center and the surface of the fibers until 120 h of exposure with the increase being more rapid at the surface. Moduli started to decrease beyond 120 h of exposure. Wide angle x-ray scattering shows an increase of crystallinity up to 120 h of exposure and total destruction of crystallinity at 144 h. Infrared spectra showed the formation of carbonyl bonds with UV exposure. To investigate thermal degradation, the fibers were exposed to 125 °C for four weeks. Young’s modulus increased near the surface after four weeks exposure. These results support the idea that surface degradation may lead to embrittlement of textile fibers.  相似文献   

11.
The properties of poly(vinyl alcohol)/graphite oxide (PVAL/GO) composites were investigated during UV irradiation using a mercury lamp (λ = 254 nm). The course of photochemical reactions was monitored by FTIR and UV-vis absorption spectroscopies as well as by estimation of insoluble gel amount formed during crosslinking. Changes in average molecular weights resulting from main chain scission in PVAL were measured by gel permeation chromatography. Composite microstructure was characterized by scanning electron microscopy and X-ray diffraction. The thermal behaviour of composites was determined by a thermogravimetric analysis. It was found that 0.1-5.0% GO addition to polymer bulk slightly hampers photooxidative degradation of PVAL. Thermal degradation in PVAL composites starts at somewhat lower temperatures in the presence of GO but this trend is changed in UV-irradiated samples.  相似文献   

12.
Nanocomposites containing pure or organically modified nanoboehmites of different sizes were prepared by melt compounding with polypropylene. The samples were UV light irradiated in artificial accelerated conditions representative of solar irradiation (λ > 300 nm) at 60 °C in air. The chemical modifications resulting from photooxidation were followed by IR and UV-visible spectroscopies. The presence of pristine nanoboehmites was shown to change the rate of oxidation of polypropylene by reducing the oxidation induction period due to the presence of residual processing antioxidant. The differences of the oxidation induction periods between the nanocomposites and the pristine polymer disappear after solvent extraction of the antioxidant. The inefficiency of traditional antioxidant in retarding the photooxidation of polypropylene containing nanodispersed boehmite is proved. Antioxidant migration to the boehmite surface induced by the preferential interaction with the polar filler is proposed as an explanation. The oxidative behaviour of the organically modified boehmites was shown to depend on the type of organic substituent. p-Toluenesulfonate reduces the adsorption of antioxidants while the presence of a long-chain alkyl benzensulfonate increased the oxidation rate by generation of radical initiators.  相似文献   

13.
Nanocomposites containing hydrotalcite and prepared by melt compounding with polypropylene were UV-light irradiated in artificial accelerated conditions representative of solar irradiation (λ > 300 nm) at 60 °C in air. The chemical modifications resulting from photooxidation were followed by IR and UV-visible spectroscopies.The presence of hydrotalcite was shown to change the global rate of photooxidation of polypropylene by reducing the oxidation induction time and increasing the oxidation rate. The differences of the oxidation induction time disappeared after solvent extraction of the antioxidant. They were attributed to a quenching of the antioxidant activity resulting from a migration onto the filler surface induced by the preferential interaction with the polar hydrotalcite. Extracting the antioxidant did not change the oxidation rate at the permanent regime. The increase of the oxidation rate was attributed to transition metal ions, present as impurities in hydrotalcite, which can accelerate the oxidation of the polymer by various mechanisms including a catalysed decomposition of hydroperoxides.  相似文献   

14.
In this work, the synthesis of polypropylene (PP)/graphene nanosheet (GNS) nanocomposites by in situ polymerization using metallocene catalysts was studied. Initial reactions were performed using rac‐Et(Ind)2ZrCl2 and rac‐Me2Si(Ind)2ZrCl2 catalysts to select the best one to obtain good molecular weight, thermal properties, and tacticity. Subsequently, PP nanocomposites with different loadings of GNS were obtained. GNS from two different sources [Graphite Nacional (GN) and Graphite Aldrich (GA)] have been used, and the differences between the obtained nanocomposites were evaluated. The GNS and nanocomposites were studied by scanning electronic microcopy, transmission electronic microcopy, and X‐ray diffraction. They showed that the GN nanosheets had lower crystal size and diameter than the GA nanosheets and dispersed better in the PP matrix. Differential scanning calorimetry analyses of both types of nanocomposites showed an increase in the crystallization temperature with increasing graphite loading. The polymeric materials were also characterized by GPC, thermogravimetric analysis, and 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The identification and distribution of condensed phase species produced on a graphite platform at temperatures between 200 and 2000 °C was studied using data obtained by scanning electron microscopy (SEM), energy dispersive (ED) X-ray spectrometry and Raman microanalysis. The first general conclusion is that there is no unique path in the thermal transformation of the metal chlorides tested, even for a particular metal chloride. Sodium, potassium and calcium chlorides showed similar vaporization characteristics, evolving mainly as monochlorides, while magnesium, beryllium and aluminium mainly vaporized as free atoms, following transformation caused by hydrolysis. The replacement of chlorine atoms by oxygen occurred at lower temperatures for beryllium and aluminium chlorides than for magnesium chloride. There were some particular areas on the platform surface where other mechanisms, such as hydrolysis of calcium chloride and dissociation of sodium chloride in the condensed phase, seemed occasionally to occur to a minor extent.  相似文献   

16.
The effect of thermal history on static mechanical properties and impact fracture behavior of three reactor polypropylene impact-copolymers (ICPPs) was investigated for three ICPPs prepared using commercial Innovene®, Unipol® and Spheripol® polymerization technologies. Multiple extrusion employing a co-rotating twin-screw extruder resulted in a significant reduction of the molecular weight of the PP homopolymer phase evidenced by the increasing melt flow index (MFI). Neither cross-linking of the ethylene-propylene rubber (EPR) phase nor EPR particle coarsening was detected for any of the ICPPs after 5 consecutive extrusions. Decreasing molecular weight of the PP homopolymer phase caused change in the crystalline morphology of injection molded specimens due to the change in crystallization kinetics and reduction of the number of tie molecules, however, the overall degree of crystallinity did not change, significantly. The static tensile mechanical properties (E, σy, ?b), critical strain energy release rate, Gc, and the Charpy notched impact strength, ak, decreased with increasing MFI in a monotonous manner for all the ICPPs investigated. Despite significant differences between the absolute values of the mechanical properties for the three ICPPs, the MFI dependence of the σy and Gc relative to that for the unaffected ICPP fell on a single master curve for all of them. High-speed digital camera, used to follow the fracture process during the instrumented impact test, revealed no significant change of the small scale yielding fracture process with increasing MFI. This was in an agreement with the negligible change in the size of the crack tip plastic zone, Rp, predicted using simple mixed mode fracture model. The plane strain value of the critical strain energy release rate, G1c, calculated from the measured Gc for the INN (2.4 kJ/m2), UNI (2.8 kJ/m2) and SPH (3.5 kJ/m2) using a simple LEFM model did not exhibit significant dependence on the number of extruder passes. The observed differences between the three ICPPs were ascribed to the significantly larger EPR content in UNI compared to the other two ICPPs and significantly larger content of isotactic PP homopolymer in the INN compared to the remaining two ICPPs.  相似文献   

17.
Ji-Zhao Liang   《Polymer Testing》2002,21(8):2340-931
The melt extrudate swell and entry pressure losses are important characteristics of elastic properties during die extrusion of polymeric fluids. They are usually expressed with die-swell ratio (B) and entry pressure drop (ΔPo). In the present paper, the die-swell behavior and entrance pressure drop of a polypropylene (PP) filled with A-glass beads were investigated by using a Rosand capillary rheometer to identify the effects of the filler contents and extrusion rate on the elastic behavior of the sample melts. The experiments were carried out under the conditions with an apparent shear rate range of 50–104 s−1 and a temperature of 190 °C. The results showed that B increased nonlinearly with increasing shear rate at the wall (γw), and increased linearly with the increase of shear stress at the wall (τw). With the increase of the volume fraction of the fillers B decreased nonlinearly. Similarly, the entry pressure drop increased linearly with the increase of τw, whereas the influence of the filler concentration on ΔPo was insignificant in this case. Furthermore, B increased as a linear function of ΔPo, and extension stress (σe) increased nonlinearly with increasing γw.  相似文献   

18.
The polypropylene/halloysite nanotubes (PP/HNTs) nanocomposites were prepared via water-assisted injection molding (WAIM) and compression molding (CM). HNTs were highly oriented in WAIM parts due to the strong shear effect; whereas HNTs were randomly oriented in the CM one. The orientation of HNTs had little influence on their nucleating efficiency for the PP. However, the HNTs selectively induced α-form crystal at high cooling rates; whereas they showed β-nucleating activity at low cooling rates. Thermal analyses revealed that the HNTs delayed thermal degradation onset in the initial degradation stage, whereas they sped up the thermal degradation in the main volatilization stage at the contents of 5 and 8 wt%. The simultaneous thermogravimetric analyses and differential scanning calorimetry measurements revealed that, at a low content, the direct stabilizing effect of HNTs on PP contributed largely to the increased thermal stability of the WAIM PP/HNTs nanocomposites rather than their barrier and entrapment effect on the volatile products.  相似文献   

19.
In order to better characterise a permanent modifier based on iridium deposited on zirconium or tungsten treated platforms of transversely heated graphite atomizer, and to gain additional information about its chemical behavior directed to an eventual further optimization, a series of experiments were carried out, both by surface techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS or ESCA) and X-ray fluorescence (XRF) and by electrothermal atomic absorption spectrometry on the iridium release from unmodified and various other modified pyrolytic graphite platforms. Special attention was paid to the influence of the amount of iridium, zirconium carbide coating of the platform surface and the presence of citric acid on the iridium vaporization during pyrolysis and atomization. The processes of iridium losses during pyrolysis and atomization and peak maximum alignment depend on the amount of the iridium deposited on the pyrolytic graphite coated platforms in the presence of nitric acid. A fractional order of release which suggests an atom vaporization from the surface or edges of the iridium islands was estimated. In the presence of citric acid, mass independence and zero order of the atom release were found. The zirconium treatment of the platform results in change of the spatial distribution of iridium and hence its vaporization. Vaporization temperatures as high as 2100°C, and first order of the process of atom generation were obtained. While it was possible to study the iridium atomization from uncoated and zirconium coated surfaces, evidencing a different order for the release process, the same was not possible for the tungsten coated platforms due to an ‘overstabilization’ that brought the iridium atomization temperature out of the working range of the instrument used. The different chemical behavior of tungsten and zirconium was also confirmed by XPS investigations. With tungsten, evidence of both W---C and W---O bonding was found, while zirconium on the contrary shows only Zr---O bonding and no evidence of carbide bonding. The SEM revealed a highly dispersed distribution of spot-like features whose smallest average diameter was of the order of 0.1 μm. The XRF asserted the confinement of iridium in these features and a strict association with zirconium in the case of zirconium treated surfaces. It is worth mentioning that such structure was preserved also after 400 thermal cycles simulating an atomization step at 1900°C despite a quite evident deterioration of the graphite surface, thus confirming the excellent durability of this modifier.  相似文献   

20.
Advances in production are leading to increasing use of polymeric thin films in applications such as automotive bearings. Two approaches have been developed to study the thermophysical properties of these thin films: The first technique based on Flash theory uses a scanning thermal microscopy (SThM) tip in temperature contrast mode to measure thermal diffusivity over a nano-scale area. The SThM tip is in contact with the upper surface of the film to detect a heat pulse delivered by a microelectromechanical heater platform from the lower surface. The second technique is a conductivity contrast mode SThM based approach for measuring the size and distribution of thermally conducting particles in thin film polymeric coatings. Topographical and thermal conductivity data are combined to produce a “correlation analysis value” 3D particle map of the coating. Good practice and a case study are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号