首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The two-dimensional elastic wave propagation in an infinite layered structure with nonlinear interlayer interfaces is analyzed theoretically to investigate the second-harmonic generation due to interfacial nonlinearity. The structure consists of identical isotropic linear elastic layers that are bonded to each other by spring-type interfaces possessing identical linear normal and shear stiffnesses but different quadratic nonlinearity parameters. Explicit analytical expressions are derived for the second-harmonic amplitudes when a single monochromatic Bloch mode propagates in the structure in arbitrary directions by applying the transfer-matrix approach and the Bloch theorem to the governing equations linearized by a perturbation method. The second-harmonic generation by a single nonlinear interface and by multiple consecutive nonlinear interfaces are shown to be profoundly influenced by the band structure of the layered structure, the fundamental Bloch wave mode, and its propagation direction. In particular, the second harmonics generated at multiple consecutive interfaces are found to grow cumulatively with the propagation distance when the phase matching occurs between the Bloch modes at the fundamental and double frequencies.  相似文献   

2.
A spectral formulation is employed to analyze the response of an axisymmetric layered structure to an impulse load from a falling weight deflectometer (FWD), which constitutes a deflection basin test. This paper presents the derivation of the dynamic stiffness matrix, the numerical formulation using discrete frequencies and wave numbers, implementation of the layered structure, and fast calculation algorithms. It is found that computational costs can be saved, without sacrificing accuracy, through the validation of a developed spectral structural model.  相似文献   

3.
Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.  相似文献   

4.
A robust, accurate, and computationally efficient interface tracking algorithm is a key component of an embedded computational framework for the solution of fluid–structure interaction problems with complex and deformable geometries. To a large extent, the design of such an algorithm has focused on the case of a closed embedded interface and a Cartesian computational fluid dynamics grid. Here, two robust and efficient interface tracking computational algorithms capable of operating on structured as well as unstructured three‐dimensional computational fluid dynamics grids are presented. The first one is based on a projection approach, whereas the second one is based on a collision approach. The first algorithm is faster. However, it is restricted to closed interfaces and resolved enclosed volumes. The second algorithm is therefore slower. However, it can handle open shell surfaces and underresolved enclosed volumes. Both computational algorithms exploit the bounding box hierarchy technique and its parallel distributed implementation to efficiently store and retrieve the elements of the discretized embedded interface. They are illustrated, and their respective performances are assessed and contrasted, with the solution of three‐dimensional, nonlinear, dynamic fluid–structure interaction problems pertaining to aeroelastic and underwater implosion applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.  相似文献   

6.
The fundamental and subharmonic resonances of a nonlinear cyclic assembly are examined using the asymptotic method of multiple-scales. The system consists of a number of identical cantilever beams coupled by means of weak linear stiffnesses. Assuming beam inextensionality, geometric nonlinearities arise due to longitudinal inertia and the nonlinear relation between beam curvature and transverse displacement. The governing nonlinear partial differential equations are discretized by a Galerkin procedure and the resulting set of coupled ordinary differential equations is solved using an asymptotic analysis. The unforced assembly is known to possess localized nonlinear normal modes, which give rise to a very complicated topological structure of fundamental and subharmonic response curves. In contrast to the linear system which exhibits as many forced resonances as its number of degrees of freedom, the nonlinear system is found to possess a number of additional resonance branches which have no counterparts in linear theory. Some of the additional resonances are spatially localized, corresponding to motions of only a small subset of periodic elements. The analytical results are verified by numerical Poincaré maps, and the forced localization features of the nonlinear assembly are demonstrated by considering its response to impulsive excitations.  相似文献   

7.
A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to com-pute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect interfaces on band structures of transverse waves propagating obliquely or verti-cally in the system are studied. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interface. Furthermore, the influ-ences of the nanoscale size, the impedance ratio and the incident angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface imperfections have signif-icant effects on the band structures in the macroscopic and microscopic scale.  相似文献   

8.
利用有限体积法实现了基于非正交同位网格的SIMPLE算法。基于熵分析方法,采用涡粘性模型求解湍流熵产方程,系统研究了湍流模型对二维翼型绕流流场熵产率的影响。通过计算NACA0012翼型在来流雷诺数为2.88×106时,0°攻角~16.5°攻角范围内的翼型表面压力系数分布和升阻力特性,验证了算法及程序的正确性。结果表明,选择不同湍流模型时,翼型流场熵产的计算结果存在差异,湍流耗散是引起流场熵产的主要原因;翼型流场的熵产主要发生在翼型前缘区、壁面边界层和翼型尾流区域,流场熵产率与翼型阻力系数线性相关;当产生分离涡时,粘性耗散引起的熵产下降。  相似文献   

9.
In this paper, we propose an uncertainty quantification analysis, which is the continuation of a recent work performed in a deterministic framework. The fluid–structure system under consideration is the one experimentally studied in the sixties by Abramson, Kana, and Lindholm from the Southwest Research Institute under NASA contract. This coupled system is constituted of a linear acoustic liquid contained in an elastic tank that undergoes finite dynamical displacements, inducing geometrical nonlinear effects in the structure. The liquid has a free surface on which sloshing and capillarity effects are taken into account. The problem is expressed in terms of the acoustic pressure field in the fluid, of the displacement field of the elastic structure, and of the normal elevation field of the free surface. The nonlinear reduced-order model constructed in the recent work evoked above is reused for implementing the nonparametric probabilistic approach of uncertainties. The objective of this paper is to present a sensitivity analysis of this coupled fluid–structure system with respect to uncertainties and to use a classical statistical inverse problem for carrying out the experimental identification of the hyperparameter of the stochastic model. The analysis show a significant sensitivity of the displacement of the structure, of the acoustic pressure in the liquid, and of the free-surface elevation to uncertainties in both linear and geometrically nonlinear simulations.  相似文献   

10.
This paper compares the dynamic coupled behavior of floating structure and mooring system in time domain using two numerical methods for the mooring lines such as the linear spring method and the nonlinear FEM (Finite Element Method). In the linear spring method, hydrodynamic coefficients and forces on the floating body are calculated using BEM (Boundary Element Method) and the time domain equation is derived using convolution. The coupled solution is obtained by simply adding the pre-determined spring constants of the mooring lines into the floating body equation. In FEM, the minimum energy principle is applied to formulate the nonlinear dynamic equation of the mooring system with a discrete numerical model. The ground contact model and Morison formula for drag forces are also included in the formulation. The coupled solution is obtained by iteratively solving the floating body equation and the FEM equation of the mooring system. Two example structures such as weathervane ship and semi-submersible structure are analyzed using linear spring and nonlinear FEM methods and the difference of those two methods are presented. By analyzing the cases with or without surge-pitch or sway-roll coupling stiffness of mooring lines in the linear spring method, the effect of coupling stiffness of the mooring system is also discussed.  相似文献   

11.
In this paper, a semi-analytic solution of the problem associated with an elliptic inclusion embedded within an infinite matrix is developed for plane strain deformations. The bonding at the inclusion-matrix interface is assumed to be homogeneously imperfect. The interface is modeled as a spring (interphase) layer with vanishing thickness. The behavior of this interphase layer is based on the assumption that tractions are continuous but displacements are discontinuous across the interface.Complex variable techniques are used to obtain infinite series representations of the stresses which, when evaluated numerically, demonstrate how the peak stress along the inclusion-matrix interface and the average stress inside the inclusion vary with the aspect ratio of the inclusion and a representative parameter h (related to the two interface parameters describing the imperfect interface in two-dimensional elasticity) characterizing the imperfect interface. In addition, and perhaps most significantly, for different aspect ratios of the elliptic inclusion, we identify a specific value (h *) of the (representative) interface parameter h which corresponds to maximum peak stress along the inclusion-matrix interface. Similarly, for each aspect ratio, we identify a specific value of h (also referred to as h * in the paper) which corresponds to maximum peak strain energy density along the interface, as defined by Achenbach and Zhu (1990). In each case, we plot the relationship between the new parameter h *and the aspect ratio of the ellipse. This gives significant and valuable information regarding the failure of the interface using two established failure criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号