共查询到20条相似文献,搜索用时 0 毫秒
1.
Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions
Louis J. Billera Hugh Thomas Stephanie van Willigenburg 《Advances in Mathematics》2006,204(1):204-240
We define an equivalence relation on integer compositions and show that two ribbon Schur functions are identical if and only if their defining compositions are equivalent in this sense. This equivalence is completely determined by means of a factorization for compositions: equivalent compositions have factorizations that differ only by reversing some of the terms. As an application, we can derive identities on certain Littlewood-Richardson coefficients.Finally, we consider the cone of symmetric functions having a nonnnegative representation in terms of the fundamental quasisymmetric basis. We show the Schur functions are among the extremes of this cone and conjecture its facets are in bijection with the equivalence classes of compositions. 相似文献
2.
For a simple graph G, the energy E(G) is defined as the sum of the absolute values of all eigenvalues of its adjacent matrix.For Δ?3 and t?3, denote by Ta(Δ,t) (or simply Ta) the tree formed from a path Pt on t vertices by attaching Δ-1P2’s on each end of the path Pt, and Tb(Δ,t) (or simply Tb) the tree formed from Pt+2 by attaching Δ-1P2’s on an end of the Pt+2 and Δ-2P2’s on the vertex next to the end.In Li et al.(2009) [16] proved that among trees of order n with two vertices of maximum degree Δ, the maximal energy tree is either the graph Ta or the graph Tb, where t=n+4-4Δ?3.However, they could not determine which one of Ta and Tb is the maximal energy tree.This is because the quasi-order method is invalid for comparing their energies.In this paper, we use a new method to determine the maximal energy tree.It turns out that things are more complicated.We prove that the maximal energy tree is Tb for Δ?7 and any t?3, while the maximal energy tree is Ta for Δ=3 and any t?3.Moreover, for Δ=4, the maximal energy tree is Ta for all t?3 but one exception that t=4, for which Tb is the maximal energy tree.For Δ=5, the maximal energy tree is Tb for all t?3 but 44 exceptions that t is both odd and 3?t?89, for which Ta is the maximal energy tree.For Δ=6, the maximal energy tree is Tb for all t?3 but three exceptions that t=3,5,7, for which Ta is the maximal energy tree.One can see that for most cases of Δ, Tb is the maximal energy tree,Δ=5 is a turning point, and Δ=3 and 4 are exceptional cases, which means that for all chemical trees (whose maximum degrees are at most 4) with two vertices of maximum degree at least 3, Ta has maximal energy, with only one exception Ta(4,4). 相似文献
3.
4.
By means of Legendre inverse series relations, we prove two terminating balanced hypergeometric series formulae. Their reversals and linear combinations yield several known and new hypergeometric series identities. 相似文献
5.
The solutions of the Nevanlinna-Pick interpolation problem for generalized Stieltjes matrix functions are parametrized via a fractional linear transformation over a subset of the class of classical Stieltjes functions. The fractional linear transformation of some of these functions may have a pole in one or more of the interpolation points, hence not all Stieltjes functions can serve as a parameter. The set of excluded parameters is characterized in terms of the two related Pick matrices.Dedicated to the memory of M. G. Kreîn 相似文献
6.
A general interpolation problem for operator-valued Stieltjes functions is studied using V. P. Potapov's method of fundamental matrix inequalities and the method of operator identities. The solvability criterion is established and under certain restrictions the set of all solutions is parametrized in terms of a linear fractional transformation. As applications of a general theory, a number of classical and new interpolation problems are considered. 相似文献
7.
Andreas Lasarow 《Linear algebra and its applications》2006,413(1):36-58
In view of a multiple Nevanlinna-Pick interpolation problem, we study the rank of generalized Schwarz-Pick-Potapov block matrices of matrix-valued Carathéodory functions. Those matrices are determined by the values of a Carathéodory function and the values of its derivatives up to a certain order. We derive statements on rank invariance of such generalized Schwarz-Pick-Potapov block matrices. These results are applied to describe the case of exactly one solution for the finite multiple Nevanlinna-Pick interpolation problem and to discuss matrix-valued Carathéodory functions with the highest degree of degeneracy. 相似文献
8.
Families of pairs of matrix-valued meromorphic functions
(,P) depending on two parameters andP are introduced. They are the projective analogues of classes of functions studied in [1] and include as special cases the projective Schur, Nevanlinna and Carathéodory classes. A two sided Nevanlinna-Pick interpolation problem is defined and solved in
(,P), using the fundamental matrix inequality method. 相似文献
9.
Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered. 相似文献
10.
Anthony Mendes 《Discrete Mathematics》2008,308(12):2509-2524
A multivariate generating function involving the descent, major index, and inversion statistic first given by Ira Gessel is generalized to other permutation groups. We provide generating functions for variants of these three statistics for the Weyl groups of type B and D, wreath product groups, and multiples of permutations. All of our ideas are combinatorial in nature and exploit fundamental relationships between the elementary and homogeneous symmetric functions. 相似文献
11.
12.
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs. 相似文献
13.
J. Grabowski 《Archiv der Mathematik》2005,85(2):190-196
It is proved that isomorphisms between algebras of smooth functions on Hausdorff smooth manifolds are implemented by diffeomorphisms. It is not required that manifolds are connected nor second countable nor paracompact. This solves a problem stated by A. Weinstein. Some related results are discussed as well.Received: 3 November 2004 相似文献
14.
Philip Hackney Margaret Lay Lon H. Mitchell Amanda Pascoe 《Linear algebra and its applications》2009,431(8):1105-536
We study the minimum semidefinite rank of a graph using vector representations of the graph and of certain subgraphs. We present a sufficient condition for when the vectors corresponding to a set of vertices of a graph must be linearly independent in any vector representation of that graph, and conjecture that the resulting graph invariant is equal to minimum semidefinite rank. Rotation of vector representations by a unitary matrix allows us to find the minimum semidefinite rank of the join of two graphs. We also improve upon previous results concerning the effect on minimum semidefinite rank of the removal of a vertex. 相似文献
15.
Dongseok Kim 《Linear algebra and its applications》2010,433(2):348-355
The complexity of a graph can be obtained as a derivative of a variation of the zeta function [S. Northshield, A note on the zeta function of a graph, J. Combin. Theory Ser. B 74 (1998) 408-410] or a partial derivative of its generalized characteristic polynomial evaluated at a point [D. Kim, H.K. Kim, J. Lee, Generalized characteristic polynomials of graph bundles, Linear Algebra Appl. 429 (4) (2008) 688-697]. A similar result for the weighted complexity of weighted graphs was found using a determinant function [H. Mizuno, I. Sato, On the weighted complexity of a regular covering of a graph, J. Combin. Theory Ser. B 89 (2003) 17-26]. In this paper, we consider the determinant function of two variables and discover a condition that the weighted complexity of a weighted graph is a partial derivative of the determinant function evaluated at a point. Consequently, we simply obtain the previous results and disclose a new formula for the complexity from a variation of the Bartholdi zeta function. We also consider a new weighted complexity, for which the weights of spanning trees are taken as the sum of weights of edges in the tree, and find a similar formula for this new weighted complexity. As an application, we compute the weighted complexities of the product of the complete graphs. 相似文献
16.
The minimum rank of a graph is the smallest possible rank among all real symmetric matrices with the given graph. The minimum semidefinite rank of a graph is the minimum rank among Hermitian positive semidefinite matrices with the given graph. We explore connections between OS-sets and a lower bound for minimum rank related to zero forcing sets as well as exhibit graphs for which the difference between the minimum semidefinite rank and these lower bounds can be arbitrarily large. 相似文献
17.
Ronald L. Smith 《Linear algebra and its applications》2008,429(7):1442-1452
In [R. Grone, C.R. Johnson, E. Sa, H. Wolkowicz, Positive definite completions of partial Hermitian matrices, Linear Algebra Appl. 58 (1984) 109-124] the positive definite (semi-) completion problem in which the underlying graph is chordal was solved. For the positive definite case, the process was constructive and the completion was obtained by completing the partial matrix an entry at a time. For the positive semidefinite case, they obtained completions of a particular sequence of partial positive definite matrices with the same underlying graph and noted that there is a convergent subsequence of these completions that converges to the desired completion. Here, in the chordal case, we provide a constructive solution, based entirely on matrix/graph theoretic methods, to the positive (semi-)definite completion problem. Our solution associates a specific tree (called the “clique tree” [C.R. Johnson, M. Lundquist, Matrices with chordal inverse zero-patterns, Linear and Multilinear Algebra 36 (1993) 1-17]) with the (chordal) graph of the given partial positive (semi-)definite matrix. This tree structure allows us to complete the matrix a “block at a time” as opposed to an “entry at a time” (as in Grone et al. (1984) for the positive definite case). In Grone et al. (1984), using complex analytic techniques, the completion for the positive definite case was shown to be the unique determinant maximizing completion and was shown to be the unique completion that has zeros in its inverse in the positions corresponding to the unspecified entries of the partial matrix. Here, we show the same using only matrix/graph theoretic tools. 相似文献
18.
We consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph and their (regular or irregular) covering graphs. Let L(G), M(G) and T(G) denote the line, middle and total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular, respectively) covering of a graph G is a (regular and irregular, respectively) covering of L(G), M(G) and T(G), respectively. For a regular graph G, we express the zeta functions of the line, middle and total graph of any (regular or irregular) covering of G in terms of the characteristic polynomial of the covering. Also, the complexities of the line, middle and total graph of any (regular or irregular) covering of G are computed. Furthermore, we discuss the L-functions of the line, middle and total graph of a regular graph G. 相似文献
19.
Adhemar Bultheel 《Journal of Computational and Applied Mathematics》2010,235(4):927-949
We study particular sequences of rational matrix functions with poles outside the unit circle. These Schur-Nevanlinna-Potapov sequences are recursively constructed based on some complex numbers with norm less than one and some strictly contractive matrices. The main theme of this paper is a thorough analysis of the matrix functions belonging to the sequences in question. Essentially, such sequences are closely related to the theory of orthogonal rational matrix functions on the unit circle. As a further crosslink, we explain that the functions belonging to Schur-Nevanlinna-Potapov sequences can be used to describe the solution set of an interpolation problem of Nevanlinna-Pick type for matricial Schur functions. 相似文献
20.
John Sinkovic 《Linear algebra and its applications》2010,432(8):2052-411
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,i≠j if and only if ij∈E. By M(G) we denote the largest possible nullity of any matrix A∈S(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G). 相似文献