首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Let K be the algebraic closure of a finite field Fq of odd characteristic p. For a positive integer m prime to p, let F=K(x,y) be the transcendence degree 1 function field defined by yq+y=xm+x?m. Let t=xm(q?1) and H=K(t). The extension F|H is a non-Galois extension. Let K be the Galois closure of F with respect to H. By Stichtenoth [20], K has genus g(K)=(qm?1)(q?1), p-rank (Hasse–Witt invariant) γ(K)=(q?1)2 and a K-automorphism group of order at least 2q2m(q?1). In this paper we prove that this subgroup is the full K-automorphism group of K; more precisely AutK(K)=Δ?D where Δ is an elementary abelian p-group of order q2 and D has an index 2 cyclic subgroup of order m(q?1). In particular, m|AutK(K)|>g(K)3/2, and if K is ordinary (i.e. g(K)=γ(K)) then |AutK(K)|>g3/2. On the other hand, if G is a solvable subgroup of the K-automorphism group of an ordinary, transcendence degree 1 function field L of genus g(L)2 defined over K, then |AutK(K)|34(g(L)+1)3/2<682g(L)3/2; see [15]. This shows that K hits this bound up to the constant 682.Since AutK(K) has several subgroups, the fixed subfield FN of such a subgroup N may happen to have many automorphisms provided that the normalizer of N in AutK(K) is large enough. This possibility is worked out for subgroups of Δ.  相似文献   

10.
Let R be an associative ring with unit and denote by K(R-Proj) the homotopy category of complexes of projective left R-modules. Neeman proved the theorem that K(R-Proj) is ?1-compactly generated, with the category K+(R-proj) of left bounded complexes of finitely generated projective R-modules providing an essentially small class of such generators. Another proof of Neeman's theorem is explained, using recent ideas of Christensen and Holm, and Emmanouil. The strategy of the proof is to show that every complex in K(R-Proj) vanishes in the Bousfield localization K(R-Flat)/K+(R-proj).  相似文献   

11.
12.
13.
14.
15.
16.
17.
In this article, we obtain the sharp bounds from LP(Gn) to the space wLP(Gn) for Hardy operators on product spaces. More generally, the precise norms of Hardy operators on product spaces from LP(Gn) to the space LPI(Gn) are obtained.  相似文献   

18.
The purpose of this article is to compute the mod 2 cohomology of Γq(K), the mapping class group of the Klein bottle with q marked points. We provide a concrete construction of Eilenberg–MacLane spaces Xq=K(Γq(K),1) and fiber bundles Fq(K)/ΣqXqB(Z2×O(2)), where Fq(K)/Σq denotes the configuration space of unordered q-tuples of distinct points in K and B(Z2×O(2)) is the classifying space of the group Z2×O(2). Moreover, we show the mod 2 Serre spectral sequence of the bundle above collapses.  相似文献   

19.
Parabolic R-polynomials were introduced by Deodhar as parabolic analogues of ordinary R-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the computation of parabolic R-polynomials for the symmetric group. Let Sn be the symmetric group on {1,2,,n}, and let S={si|1in?1} be the generating set of Sn, where for 1in?1, si is the adjacent transposition. For a subset J?S, let (Sn)J be the parabolic subgroup generated by J, and let (Sn)J be the set of minimal coset representatives for Sn/(Sn)J. For uv(Sn)J in the Bruhat order and x{q,?1}, let Ru,vJ,x(q) denote the parabolic R-polynomial indexed by u and v. Brenti found a formula for Ru,vJ,x(q) when J=S?{si}, and obtained an expression for Ru,vJ,x(q) when J=S?{si?1,si}. In this paper, we provide a formula for Ru,vJ,x(q), where J=S?{si?2,si?1,si} and i appears after i?1 in v. It should be noted that the condition that i appears after i?1 in v is equivalent to that v is a permutation in (Sn)S?{si?2,si}. We also pose a conjecture for Ru,vJ,x(q), where J=S?{sk,sk+1,,si} with 1kin?1 and v is a permutation in (Sn)S?{sk,si}.  相似文献   

20.
Let XZnZ denote the unitary Cayley graph of ZnZ. We present results on the tightness of the known inequality γ(XZnZ)γt(XZnZ)g(n), where γ andγt denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal’s function. In particular, we construct integers n with arbitrarily many distinct prime factors such that γ(XZnZ)γt(XZnZ)g(n)?1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号