首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shape memory polymers (SMP) exhibit temperature, frequency and strain rate dependent properties which may be manipulated by various types of external stimuli to achieve desirable response characteristics. In recent years, the emphasis has been on designing SMPs which do not require external stimuli (such as a heat source) and have a rapid response time with large homogenous and reversible deformation characteristics. In this research, the fabrication process and dynamic vibration testing of an electrically activated SMP are presented. It is shown that conductive SMP beams can be fabricated to achieve tunable stiffness and damping with a reasonable thermal gradient generated by electrical triggering. This can allow the tuning of a range of frequency bandwidth and damping properties of SMPs for vibration control applications. The experimentation yielded modal properties (natural frequencies and damping) of the SMP beams. These parameters were validated against values obtained from the estimated performance of these beams based on the complex modulus parameters obtained using dynamic mechanical analysis (DMA). For a modest 20 °C temperature range in an epoxy based SMP, a resulting shift of approximately 7% in the natural frequency and 100% change in the damping ratio of a rectangular beam was successfully attained. These results recommend SMPs as being tunable materials that can enhance vibrational performance and expand the operational envelope of structures.  相似文献   

2.
A substantial approach to one‐dimensional (1D) electrically conductive composites was proposed which was based on the thermodynamic analysis of electric‐field‐induced particle alignment in a nonpolar thermoplastic polymer matrix. The process condition window was based on the real‐time exploration of dynamic percolation under different electric fields with carbon black (CB)‐filled polyethylene as a model. The CB content was the main factor of the process condition. Its upper limit was set as the critical percolation concentration at the thermodynamic equilibrium state without an electric field to eliminate the possibility of conductive network formation perpendicular to the electric‐field direction, whereas its lower limit the critical percolation concentration at the thermodynamic equilibrium state under a critical electric field (E*). A composite with CB content in this window, isothermally treated in an electric field not less than E*, showed conductivity in the electric‐field direction about 105 times larger than that in the perpendicular direction. A 1D cluster structure in the direction of the electric filed was confirmed with scanning electron microscopy morphology observations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 184–189, 2005  相似文献   

3.
Carbon black (CB)/poly (lactic acid) (PLA) conductive biopolymer composite were fabricated by casting. A low percolation value (1.25 vol%) is achieved due to the formation of a two-dimensional conductive network in the composite. Vapor sensing behaviors of the CB/PLA conductive composite were studied. A high chemical selectivity with respect to different organic vapors and a good reproducibility to two typical solvents, ethyl acetate and ethanol, during exposure-drying runs have been demonstrated. The variations of the sensing behaviors during exposure-drying processes were associated with the evolvement of CB conductive networks. The results indicate that the Flory-Huggins interactions parameter x 12, related to the solubility parameter (thermodynamic factor), molar volume (kinetic factor) and the measurement temperature, affects the vapor sensing behaviors of CB/PLA composite significantly. These results suggest CB/PLA conductive biopolymer composite can be applied as a nice vapor sensor candidate.  相似文献   

4.
This work deals with the dielectric properties of conductive composite materials, which consist of thermoplastic polypropylene (PP) matrix filled with carbon black (CB). The CB concentration was systematically varied in a wide range. Our main interest is focused on the investigation of electrical conductivity mechanism and related percolation phenomena in these materials. To study the electrical and dielectric properties of composites we used broadband ac dielectric relaxation spectroscopy (DRS) techniques in a wide temperature range. By measurements of complex dielectric permittivity, ϵ*, the dependence of ac conductivity, σac, and dc conductivity, σdc, on the frequency, the temperature and the concentration of the conductive filler was investigated. The behavior of this system is described by means of percolation theory. The percolation threshold, PC, value was calculated to be 6.2 wt.% CB. Both, dielectric constant and dc conductivity follow power‐law behavior, yielding values for the critical exponents, which are in good agreement with the theoretical ones. Indications for tunneling effect in the charge carriers transport through the composites are presented. The temperature dependence of dc conductivity gives evidence for the presence of positive temperature coefficient (PTC) effect.  相似文献   

5.
The positive liquid crystals, 4′-heptyl-4-biphenylcarbonitrile (7CB), are used to functionalize carbon nanotubes (LC-CNT), which can be aligned in the liquid crystalline polyimide (LC-PI) matrix under an alternating electric field to fabricate the thermally conductive LC-CNT/LC-PI composite films. The efficient establishment of thermal conduction pathways in thermally conductive LC-CNT/LC-PI composite films with a low amount of LC-CNT is achieved through the oriented alignment of LC-CNT within the LC-PI matrix. When the mass fraction of LC-CNT is 15 wt %, the in-plane thermal conductivity coefficient (λ) and the through-plane thermal conductivity coefficient (λ) of the LC-CNT/LC-PI composite films reach 4.02 W/(m ⋅ K) and 0.55 W/(m⋅K), which are 90.5 % and 71.9 % higher than those of the intrinsically thermally conductive LC-PI films respectively, also 28.8 % and 5.8 % higher than those of the CNT/LC-PI composite films respectively. Meanwhile, the thermally conductive LC-CNT/LC-PI composite films also possess excellent mechanical and heat resistance properties. The Young's modulus and the heat resistance index are 2.3 GPa and 297.7 °C, respectively, which are higher than the intrinsically thermally conductive LC-PI films and the thermally conductive CNT/LC-PI composite films under the same amount of CNT.  相似文献   

6.
《化学:亚洲杂志》2017,12(3):293-297
Ag2O cubes, truncated octahedra, rhombic dodecahedra, and rhombicuboctahedra were synthesized in aqueous solution. Two tungsten probes were brought into contact with a single particle for electrical conductivity measurements. Strongly facet‐dependent electrical conductivity behaviors have been observed. The {111} faces are most conductive. The {100} faces are moderately conductive. The {110} faces are nearly non‐conductive. When electrodes contacted two different facets of a rhombicuboctahedron, asymmetrical I–V curves were obtained. The {111} and {110} combination gives the best I–V curve expected for a p‐n junction with current flowing in one direction through the crystal but not in the opposite direction. Density of states (DOS) plots for varying number of different lattice planes of Ag2O match with the experimental results, suggesting that the {111} faces are most electrically conductive. The thicknesses of the thin surface layer responsible for the facet‐dependent properties of Ag2O crystals have been determined.  相似文献   

7.
The thermal conductivity and thermal expansivity of a thermotropic liquid crystalline copolyesteramide with draw ratio λ from 1.3 to 15 have been measured parallel and perpendicular to the draw direction from 120 to 430 K. The sharp rise in the axial thermal conductivity Kpar; and the drastic drop in the axial expansivity α at low λ, and the saturation of these two quantities at λ > 4 arise from the corresponding increase in the degree of chain orientation revealed by wide-angle x-ray diffraction. In the transverse direction, the thermal conductivity and expansivity exhibit the opposite trends but the changes are relatively small. The draw ratio dependences of the thermal conductivity and expansivity agree reasonably with the predictions of the aggregate model. At high orientation, Kpar; of the copolyesteramide is slightly higher than that of polypropylene but one order of magnitude lower than that of polyethylene. In common with other highly oriented polymers such as the lyotropic liquid crystalline polymer, Kevlar 49, and flexible chain polymer, polyethylene, αpar; of the copolyesteramide is negative, with a room temperature value differing from those of Kevlar 49 and polyethylene by less than 50%. Both the axial and transverse expansivity show transitions at about 390 and 270 K, which are associated with large-scale segmental motions of the chains and local motions of the naphthalene units, respectively. ©1995 John Wiley & Sons, Inc.  相似文献   

8.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   

9.
聚乙烯/炭黑复合材料导电体系的结构形态   总被引:4,自引:0,他引:4  
沈烈  益小苏 《高分子学报》2001,28(1):130-133
将导电填料(例如炭黑)加入绝缘的聚合物基体即得到导电复合材料,两组混全物的电阻率随导电填料体积分数的变化而改变,电阻率与导电填料体积分数的关系称为渗流曲线,可分为三个主要区域:低导电填料含量区域,复合材料的电阻率很大,聚合物的电阻率占主导;渗流区域,导电填料含量少量的增加会引起复合材料电阻率很大的提高;高导电填料区域,复合材料电阻率很大的提高;高导电填料区域,复合材料电阻率主要由导电填料的电阻率决定,对于导电复合材料已有大量的实验和理论工作来解释导电复合材料已有大量的实验和理论工作来解释导电填料含量和复合材料各组分的形貌对电性能的影响,其中有效介质普适方程(GEM方程)已经对大量的渗流曲线进行了精确的拟合。聚乙烯/炭黑复合材料中由于炭黑的大量分布很难观测其微观形貌,本文对不同辐照交联程度和不同环境温度下聚乙烯/炭黑复合材料的渗流曲线进行分析,试图找出GEM方程各参数与复合材料各组分形貌的关系,为导电复合材料的设计和制备提供理论基础。  相似文献   

10.
In this paper, the size and numerical concentration of free volume of high density polyethylene/carbon black (HDPE/CB) composite were investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples, one with various CB contents in the composites and the other with changing the temperature of HDPE/CB composite containing 25 phr CB. It was found that the important parameters of PALS show their fluctuation around the percolation threshold. The conductivity of HDPE/CB is controlled by CB contribution, and that can be reflected in o-Ps lifetime. The temperature dependence of positron lifetimes reveals that the existence of glass transition temperatures and the size of free volume holes increases when temperature increases above glass transition. The results observed from the second set of samples suggest that positive temperature coefficient is in some way related with free volume expansion. The experiment facts implied that the conductivity of HDPE/CB was related with not only the size of free volume holes but also the number of free volume holes. The Doppler-broadening of HDPE/CB was also investigated.  相似文献   

11.
The process for producing the electrode material LiCoPO4 modified by the lithium-conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) was studied. To create a composite consisting of an electrochemically active substance and an electrically conductive additive distributed uniformly between LiCoPO4 particles, a peroxide solution of a LATP precursor was used. After annealing at 700°C, the two-phase composite LiCoPO4/LATP was obtained, the conductivity of which was two orders of magnitude higher than that of binary lithium cobalt phosphate at room temperature.  相似文献   

12.
The microstructure and conductive mechanism of high density polyethylene/carbon black (HDPE/CB) compositewere investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples,one with various CB contents in the composites and the other with various γ-irradiation doses in HDPE/CB compositecontaining 20 wt% CB. It was found that CB particles distribute in the amorphous regions, the CB critical content value inHDPE/CB composite is about 16.7 wtO/ and the suitable γ-irradiation dose for improving the conductive behavior ofHDPE/CB composite is about 20 Mrad. T'he result observed for the second set of samples suggests that γ-irradiation causesnot only cross-linking in amorphous regions but also destruction of the partial crystalline structure. Therefore, a suitableirradiation dose, about 20 Mrad, can induce sufficient cross-linking in the amorphous regions without enhancing thedecomposition of crystalline structure, so that the positive temperature coefficient (PTC) effect remains while the negativetemperature coefficient (NTC) effect is suppressed. A new interpretation of the conductive mechanism, which might providea more detailed explanation of the PTC effect and the NTC effect has been proposed.  相似文献   

13.
Abstract

The electrical conductivity behavior of polyaniline–poly(ethylene‐co‐vinyl acetate) (PANI–EVA) blends was variable and dynamic during their storage. It was shown that the apparent concentration of the intrinsically conductive polymer at which a conductivity jump of the blends occurs (Φ c ) is not a constant value over time. The electrical conductivity of the films of low PANI content (below 2.5 wt.%) increased by several (ca. 5) orders of magnitude. It was found that the PANI phase undergoes a flocculation process subsequently resulting in the formation of conductive pathways and a continuous network. Besides, the shape of percolation curves was found to change during storage of the films. Decreased conductivity deviations were registered for blends of low PANI content (<2.5 wt.%), indicating that an improvement (or decreasing number of defects) of the conductive pathways took place within the bulk of the insulating EVA matrix. These results and observed phenomena are discussed by means of the interfacial model for electrically conductive polymer blends. They supported the dispersion/flocculation phase transition within similar composite materials. The phase separation and conductivity jump are attributed to the interfacial interactions between the polymeric constituents. It was shown that the microstructure of the blends consists of highly ordered PANI paths embedded in the insulating EVA matrix. Long fibrils of PANI and interconnected fractal‐like networks were observed. It was found that the sizes of the PANI domains also varied during storage of the films. Due to the spontaneous flocculation of the primary PANI particles, conductive pathways are formed at extremely low percolation threshold (Φ c , loading level ca. 5 × 10?3 wt. fraction). Thus, an important property of the conductive constituent, namely its solid‐state rearrangement, was proved. This PANI self‐organization is also interpreted according to the interfacial model of polymer composites. On the other hand, the competition between self‐organization of the complex of PANI with dodecylbenzenesulfonic acid and crystallization of EVA matrix has resulted in structural changes and formation of continuous conductive networks within the blends, responsible for their significantly increased conductivity.  相似文献   

14.
The poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer and linear low-density polyethylene (LLDPE) were blended and irradiated by γ rays to prepare shape memory polymer (SMP). Different weight fractions of conductive carbon black (CB) were filled into SMP to form a novel electroactive shape memory CB/SBS/LLDPE composite. The CB reinforced radiation cross-linked SBS/LLDPE blends for the improvement of the mechanical weakness and conductivity of SBS/LLDPE bulk and for wide practical engineering uses. The electroactive shape memory CB/SBS/LLDPE composites were investigated by electrical properties, mechanical, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electroactive shape memory effects. It is found that the tensile strength, storage modulus, and resistance against mechanical and thermal mechanical cycle loading in the developed composites increased due to the role of reinforcement of CB. The melting temperatures and volume resistance of the composites decreased with the increment of CB for excellent electrical conductivity of CB. The electroactive shape memory effects of developed CB/SBS/LLDPE composites were affected by CB weight fractions and applied voltage, while good shape recovery could be obtained in the shape recovery test. When the CB fraction is more than 5 wt%, full recovery can be observed after tens of seconds and shape recovery speed increased with CB fractions and voltage increasing. However, the shape recovery rate decreases slightly with increment of cycle times.  相似文献   

15.
Polyaniline (PAni)-coated reduced multiwall carbon nanotubes (PRMWNTs) and carbon black (CB)-filled high-density polyethylene (HDPE) composites (PRMWNTs/CB/HDPE) were prepared through a melt mixing method. Oxidized MWNTs (OMWNTs) were prepared by treating pristine multiwall carbon nanotubes (MWNTs) with an acid mixture (HNO3:H2SO4), and PAni-coated OMWNTs (POMWNTs) were synthesized via in-situ polymerization of aniline monomer in the presence of OMWNTs. POMWNTs were further reduced using hydrazine monohydrate to obtain the PRMWNTs. Fourier transform infrared (FT-IR) spectra and thermogravimetric analysis (TGA) confirmed the formation of PRMWNTs. PRMWNTs showed significantly improved thermal stability and electrical conductivity comparing to POMWNTs. The positive temperature coefficient (PTC) behavior of PRMWNTs/CB/HDPE composites revealed enhanced PTC intensity and electrical conductivity at room temperature compared to POMWNTs/CB/HDPE composites. The PRMWNTs-10/CB/HDPE composite showed high peak resistivity (301.99 MΩ-cm) and low room temperature resistivity compared to the POMWNTs/CB/HDPE composite, and thus showed the highest PTC intensity value of 6.693 as well as very excellent cyclic stability.  相似文献   

16.
A polymer composite of polypyrrole (PPy) and polystyrene (PS) was synthesized in this study. Pyrrole was firstly impregnated within the PS substrate where supercritical carbon dioxide (SCCO2) at 40 °C and 10.5 MPa was used as the solvent. The resulting polymer composite was then soaked in a solution of metallic salt to form an electrically conductive product. Thermal analyses were carried out in this study. Glass transition temperatures from the DSC curves and thermal decomposition temperatures from the TGA curves were observed. These temperatures rise gradually from pure PS, undoped blend to doped composite that indicates blending took place in SCCO2, and polymerization was proceeding when the pyrrole/PS blend was soaking in the doping solution. Furthermore, various effects of the doping conditions on the conductivity of the PPy/PS composite were investigated. Water and acetonitrile were used as the solvents where the former yielded a higher conductivity of the product. Various doping temperatures were studied and a maximum conductivity was observed at 25 °C. The conductivity also depends on the nature of the oxidant. A bell-shaped profile of the conductivity with respect to the concentration of each oxidant was obtained. The maximum conductivity of the composites with iron compounds as oxidants decreases in the following order of anions: chloride > sulfate > perchloride > nitrate in aqueous solutions. Comparison of the scanning electron microscope results of the composite was presented where chloride and nitrate anions were used as the oxidant. It was found that the composite with higher conductivity has higher bulk density and less porous morphology.  相似文献   

17.
Two conductive polymers were evaluated to be the active materials in a sensor device for the detection of beta radiation. This was accomplished by characterizing the changes in conductivity of electrically conducting polymer films caused by exposure to tritium gas for varying lengths of time. The behavior of these materials when exposed to gamma radiation was also studied to gain further insight into the mechanism of conductivity degradation by ionizing radiation. Two types of conductive polymer, polyaniline (PANi) and poly(3,4-ethylenedioxythiophene) (PEDOT), were chosen as candidate materials for their widespread commercial use. The change of surface resistance (conductivity) of PANi and PEDOT films when exposed to gamma radiation in both air and deuterium environments was evaluated as well as tritium exposures in 104 and 105 Pa gas. Raman and absorbance spectra of gamma irradiated samples were obtained to determine the mechanism of conductivity degradation in both polymers. Post-irradiation gas analysis of the samples contained in deuterium revealed very little (or no) hydrogen in the containment vessel, indicating that hydrogen–deuterium isotopic exchange was not responsible for the decrease in surface conductivity due to gamma exposure. The effects of irradiation-induced oxidation were also studied for both conductive polymers during gamma irradiation. It was concluded that chain scission via free radical formation and chain cross-linking are most likely the two dominant mechanisms for conductivity change and not de-protonation of the polymer.  相似文献   

18.
Structured elastomer films (100–150 µm) presenting piezo and magneto resistance are described. The films are composites of filler particles, which are both electrically conductive and magnetic, dispersed in an elastomeric matrix. The particles consist of magnetite (6 nm) grouped in silver‐coated aggregates (Fe3O4@Ag). The matrix is styrene–butadiene rubber (SBR) in which diethylene glycol (DEG) is added. The particles, SBR and DEG, are dispersed in toluene and then placed between two rare earth magnets. Formation of pseudo‐chains (needles) of inorganic material aligned in the direction of the magnetic field is obtained after solvent evaporation. The addition of DEG is substantial to obtain an electrically conductive material. The electrical conductivity is anisotropic and increases when applying normal stresses and/or magnetic fields in the direction of the needles. The elastomers, particles, and needless were characterized by XRD, SEM, EDS, FTIR, DSC, TGA, VSM, profilometry, and stress–strain analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 574–586  相似文献   

19.
A Links‐Nodes‐Blobs (L‐N‐B) model, based on the fractal and percolation concepts, is used to study the electrically conductive mechanism of conductive filler loaded polymer composites. The change in the conductivity of polymer composites during the mixing process can be explained as the competition between the breakdown of filler aggregates and the diffusion of ingredients of matrix material and impurities onto the surface of the filler. The value of the fractal dimension μ, which is the exponent in the power‐law relationship of the electrical conductivity σ = σ0·(ϕϕc)μ, is calculated as 1.88. This value is close to the values obtained directly from experiments or from other simulations. The positive temperature coefficient (PTC) behavior in the conductivity of composite material is also explained by this model as the breakdown of the conductive filler network. If the thermo‐expansion induced strain is greater than the apparent on‐set strain εonset = mQ + 2 G/2d G·εb of the L‐N‐B model, a strong PTC effect would happen.  相似文献   

20.
The conductivity of styrene‐butadiene‐styrene block copolymers containing different amounts of extraconductive carbon black (CB) was investigated as a function of the mold temperature. The composites exhibited reduced percolation thresholds (between 1.0 and 2.0 vol % CB). The dynamic mechanical analysis characterization revealed that the glass‐rubber‐transition temperatures of both segments were not affected by the CB addition, although the damping of the polybutadiene phase displayed a progressive drop with an increase in the CB concentration. The normalized curves of tan δ/tan δmax (where tan δ represents the value of the loss tangent at any measurement temperature and tan δmax represents the loss tangent peak value at the corresponding temperature Tmax) versus T/Tmax (where T is the temperature and Tmax is the maximum temperature), corresponding to both polystyrene and polybutadiene phases as well as the activation energy related to the glass‐rubber‐transition process, did not present any significant change with the addition of CB. The dielectric analysis revealed the presence of two relaxation peaks in the composite containing 1.5 vol % CB, the magnitude of which was strongly influenced by the frequency, being attributed to interfacial Maxwell‐Wagner‐Sillars relaxations caused by the presence of different interfaces in the composite. The mechanical properties were not affected by the presence of CB at concentrations of up to 2.5 vol %. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2983–2997, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号