首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A three-dimensional problem on the contact interaction between the faces of a rectangular crack under a normally incident harmonic tension–compression wave is considered. The problem is solved by using the method of boundary integral equations and an iterative algorithm. The contact forces and the discontinuity in the displacement of the crack faces are studied. The results obtained are compared with those for a finite plane crack.  相似文献   

2.
A plane problem is solved for the contact interaction between the faces of a rectilinear crack under the action of a normally incident harmonic tension–compression wave. Iterative algorithms are presented to solve the problem for both given initial distribution of contact forces and given initial discontinuity in the displacements of the crack faces. The convergence rates of the algorithms, the maximum contact forces, and displacement discontinuities are compared.  相似文献   

3.
We study the contact interaction of the faces of a finite rectilinear crack under harmonic compression–expansion and shear waves incident at an arbitrary angle. An iterative algorithm based on the variational principles of elastic theory is used. The contact interaction and displacement discontinuity of the crack faces are analyzed. The crack-tip stress intensity factors are calculated. The results are compared with those obtained regardless of the contact interaction  相似文献   

4.
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular, which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies. The project supported by the National Natural Science Foundation of China (19872002) and Climbing Foundation of Northern Jiaotong University  相似文献   

5.
弹性波与单侧界裂纹相互作用问题的边界元法   总被引:1,自引:0,他引:1  
盖秉政  陈清才 《力学学报》2000,32(3):334-342
措助边界元法设计了一种迭代修正方法来求解单侧界面裂纹模型与弹性波的相互作用问题,作为对算法的检验,用这种方法我们具体地分析了平面简谐弹性波对一个则界面裂纹的入射,给出了裂纹面的接触形态及应力场。  相似文献   

6.
Consideration is given to the contact interaction of the faces of a stationary plane elliptical crack under the action of a harmonic shear wave normally incident on the crack surface. The dependence of the mode II and III stress intensity factors on the wave number is studied for different values of the friction coefficient  相似文献   

7.
The paper deals with the three-dimensional dynamic problem for an elliptic crack interacting with a normally incident harmonic compression–expansion wave, considering the contact interaction of the crack faces. An asymmetric solution is obtained using an iteration algorithm developed earlier. Numerical results are presented  相似文献   

8.
Nonlinear scattering of ultrasonic waves by closed cracks subject to contact acoustic nonlinearity (CAN) is determined using a 2D Finite Element (FE) coupled with an analytical approach. The FE model, which includes unilateral contact with Coulomb friction to account for contact between crack faces, provides the near-field solution for the interaction between in-plane elastic waves and a crack of different orientations. The numerical solution is then analytically extended in the far-field based on a frequency domain near-to-far field transformation technique, yielding directivity patterns for all linear and nonlinear components of the scattered waves. The proposed method is demonstrated by application to two nonlinear acoustic problems in the case of tone-burst excitations: first, the scattering of higher harmonics resulting from the interaction with a closed crack of various orientations, and second, the scattering of the longitudinal wave resulting from the nonlinear interaction between two shear waves and a closed crack. The analysis of the directivity patterns enables us to identify the characteristics of the nonlinear scattering from a closed crack, which provides essential understanding in order to optimize and apply nonlinear acoustic NDT methods.  相似文献   

9.
Consideration is given to the contact interaction of the faces of a penny-shaped crack in three-dimensional space under a normally incident harmonic shear wave. The problem is solved by the method of boundary integral equations. The dependence of the stress-intensity factor on the wave number is analyzed. The results obtained are compared with those neglecting the contact interaction.  相似文献   

10.
This paper is concerned with dynamic problems in fracture mechanics for elastic solids having cracks with contacting faces. The contact problem for a penny-shaped crack with a nonzero initial opening under normally incident harmonic wave is solved by the method of boundary integral equations. The solutions are compared with those that neglect the contact interaction of the crack faces. Results are presented for different values of the initial crack opening Presented at the 6th International Conference on Modern Practice in Stress and Vibration Analysis (Bath, United Kingdom, September 5–7, 2006). Published in Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 125–131, July 2007.  相似文献   

11.
This paper presents a finite difference time-domain technique for 2D problems of elastic wave scattering by cracks with interacting faces. The proposed technique introduces cracks into the finite difference model using a set of split computational nodes. The split-node pair is bound together when the crack is closed while the nodes move freely when open, thereby a unilateral contact condition is considered. The development of the open/close status is determined by solving the equation of motion so as to yield a non-negative crack opening displacement. To check validity of the proposed scheme, 1D and 2D scattering problems for which exact solutions are known are solved numerically. The 1D problem demonstrates accuracy and stability of the scheme in the presence of the crack-face interaction. The 2D problem, in which the crack-face interaction is not considered, shows that the proposed scheme can properly reproduce the stress singularity at the tip of the crack. Finally, scattered fields from cracks with interacting faces are investigated assuming a stick and a frictionless contact conditions. In particular, the directivity and higher-harmonics are investigated in conjunction with the pre-stress since those are the basic information required for a successful ultrasonic testing of closed cracks.  相似文献   

12.
A plane problem for an electrically conducting interface crack in a piezoelectric bimaterial is studied. The bimaterial is polarized in the direction orthogonal to the crack faces and loaded by remote tension and shear forces and an electrical field parallel to the crack faces. All fields are assumed to be independent of the coordinate co-directed with the crack front. Using special presentations of electromechanical quantities via sectionally-analytic functions, a combined Dirichlet–Riemann and Hilbert boundary value problem is formulated and solved analytically. Explicit analytical expressions for the characteristic mechanical and electrical parameters are derived. Also, a contact zone solution is obtained as a particular case. For the determination of the contact zone length, a simple transcendental equation is derived. Stress and electric field intensity factors and, also, the contact zone length are found for various material combinations and different loadings. A significant influence of the electric field on the contact zone length, stress and electric field intensity factors is observed. Electrically permeable conditions in the crack region are considered as well and matching of different crack models has been performed.  相似文献   

13.
The problem of contact interaction of the opposite faces of a linear crack under a normally incident harmonic tension-compression wave is numerically solved by the Galerkin method with piecewise-linear continuous elements. The dependence of the stress intensity factor (opening mode) on the wave number is investigated Published in Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 137–142, November 2005.  相似文献   

14.
An inplane problem for a crack moving with constant subsonic speed along the interface of two piezoelectric materials is considered. A mechanically frictionless and electrically permeable contact zone is assumed at the right crack tip whilst for the open part of the crack both electrically permeable and electrically insulated conditions are considered. In the first case a moving concentrated loading is prescribed at the crack faces and in the second case an additional electrical charge at the crack faces is prescribed as well. The main attention is devoted to electrically permeable crack faces. Introducing a moving coordinate system at the leading crack tip the corresponding inhomogeneous combined Dirichlet–Riemann problem is formulated and solved exactly for this case. All electromechanical characteristics at the interface are presented in a closed form for arbitrary contact zone lengths, and further, the transcendental equation for the determination of the real contact zone length is derived. As a particular case of the obtained solution a semi-infinite crack with a contact zone is considered. The numerical analysis performed for a certain piezoelectric bimaterial showed an essential increase of the contact zone length and the associated stress intensity factor especially for the near-critical speed region. Similar investigations have been performed for an electrically insulated crack and the same behavior of the above mentioned parameters is observed.  相似文献   

15.
Shear to longitudinal mode conversion via second harmonic generation is studied theoretically and computationally for plane waves in a two-dimensional, adhesive, hexagonally close-packed microscale granular medium. The model includes translational and rotational degrees of freedom, as well as normal and shear contact interactions. We consider fundamental frequency plane waves in all three linear modes, which have infinite spatial extent and travel in one of the high-symmetry crystal directions. The generated second harmonic waves are longitudinal for all cases. For the lower transverse–rotational mode, an analytical expression for the second harmonic amplitude, which is derived using a successive approximations approach, reveals the presence of particular resonant and antiresonant wave numbers, the latter of which is prohibited if rotations are not included in the model. By simulating a lattice with adhesive contact force laws, we study the effectiveness of the theoretical analysis for non-resonant, resonant, and antiresonant cases. This work is suitable for the analysis of microscale and statically compressed macroscale granular media, and should inspire future studies on nonlinear two- and three-dimensional granular systems in which interparticle shear coupling and particle rotations play a significant role.  相似文献   

16.
The scattering problem of a Lamb wave incident on a symmetric pair of surface-breaking transverse cracks in a plate is considered. The Lamb wave is assumed to be obliquely incident on the crack plane. Since the cracks are part-through, the scattered field will contain reflected as well as transmitted waves. The energy of the incoming wave is partitioned into reflected and transmitted wave modes. Energy coefficients of the reflected and transmitted waves are calculated as a function of incident frequency and crack depth. The incidence angle of the incoming wave is also treated as a parameter. Both the reflected and transmitted wave fields are considered as linear superpositions of all real and complex wave modes in the plate. Decomposition of modes is achieved with the help of an orthogonality condition based on the principle of reciprocal work. Continuity of displacement and stress fields is imposed at the crack plane. Energy coefficients for reflection and transmission are obtained from the mode amplitudes. Energy coefficients are shown to be a strong function of incident frequency and crack depth. Experiments are conducted with a PZT transducer network interacting with a symmetric pair of machined cracks in an aluminum plate. Trends predicted by the analysis are reflected in the experimental results.  相似文献   

17.
A closed-form asymptotic solution is provided for velocity fields and the nominal stress rates near the tip of a stationary crack in a homogeneously pre-stressed configuration of a nonlinear elastic, incompressible material. In particular, a biaxial pre-stress is assumed with stress axes parallel and orthogonal to the crack faces. Two boundary conditions are considered on the crack faces, namely a constant pressure or a constant dead loading, both preserving an homogeneous ground state. Starting from this configuration, small superimposed Mode I or Mode II deformations are solved, in the framework of Biot's incremental theory of elasticity. In this way a definition of an incremental stress intensity factor is introduced, slightly different for pressure or dead loading conditions on crack faces. Specific examples are finally developed for various hyperelastic materials, including the J2-deformation theory of plasticity. The presence of pre-stress is shown to strongly influence the angular variation of the asymptotic crack-tip fields, even if the nominal stress rate displays a square root singularity as in the infinitesimal theory. Relationships between the solution with shear band formation at the crack tip and instability of the crack surfaces are given in evidence.  相似文献   

18.
In this study, the transient response of a finite crack subjected to an incident horizontally polarized shear wave and then propagated with a constant speed in an unbounded elastic solid is investigated. Initially, the finite crack with crack length l is stress-free and at rest. At time t = 0, an incident horizontally polarized shear wave strikes at one of the crack tips and will arrive at the other tip at a later time. Then, two crack tips propagate along the crack tip line with different velocities as the corresponding stress intensity factors reach their fracture toughness. The correspondent configuration is shown in Fig. 1
  1. Download : Download high-res image (31KB)
  2. Download : Download full-size image
Fig. 1. Configuration and coordinate systems of a finite crack in an unbounded medium.
. In analyzing this problem, diffracted waves generated by two propagating crack tips must be taken into account and it makes the analysis extremely difficult. In order to solve this problem, the transform formula in the Laplace transform domain between moving and stationary coordinates is first established. Complete solutions are determined by superposition of proposed fundamental solutions in the Laplace transform domain. The fundamental solutions to be used are from the problems of applying exponentially distributed traction and screw dislocation on crack faces and along the crack tip line, respectively. The exact transient solutions of dynamic stress intensity factor for the first few diffracted waves that arrive at two crack tips are obtained and expressed in compact formulations. Numerical calculations of dynamic stress intensity factors for both tips are evaluated and the results are discussed in detail.  相似文献   

19.
The dynamic theory of linear piezoelectricity is applied to analyze the scattering of time harmonic flexural waves by a through crack in a symmetric piezoelectric laminated plate subjected to electric field loading. An incident wave giving rise to moments symmetric about the crack plane is considered. Piezoelectric layers are added to the upper and lower surfaces. Classical lamination theory is extended to include dynamic piezoelectric effects. Fourier transforms are used to reduce the problem to the solution of a pair of dual integral equations, the solution of which is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic moment intensity factor vs. frequency is computed and the influence of the electric field on the normalized values is displayed graphically.  相似文献   

20.
The harmonics of plane longitudinal and trans-verse waves in nonlinear elastic solids with up to cubic nonlinearity in a one-dimensional setting are investigated in this paper. It is shown that due to quadratic nonlinearity, a transverse wave generates a second longitudinal harmonic. This propagates with the velocity of transverse waves, as well as resonant transverse first and third harmonics due to the cubic and quadratic nonlinearities. A longitudinal wave generates a resonant longitudinal second harmonic, as well as first and third harmonics with amplitudes that increase linearly and quadratically with distance propagated. In a second investigation, incidence from the linear side of a pri-mary wave on an interface between a linear and a nonlinear elastic solid is considered. The incident wave crosses the interface and generates a harmonic with interface conditions that are equilibrated by compensatory waves propagating in two directions away from the interface. The back-propagated compensatory wave provides information on the nonlinear elastic constants of the material behind the interface. It is shown that the amplitudes of the compensatory waves can be increased by mixing two incident longitudinal waves of appropriate frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号