首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
In this paper, based on equilibrium control law proposed by Björk and Murgoci (2010), we study an optimal investment and reinsurance problem under partial information for insurer with mean–variance utility, where insurer’s risk aversion varies over time. Instead of treating this time-inconsistent problem as pre-committed, we aim to find time-consistent equilibrium strategy within a game theoretic framework. In particular, proportional reinsurance, acquiring new business, investing in financial market are available in the market. The surplus process of insurer is depicted by classical Lundberg model, and the financial market consists of one risk free asset and one risky asset with unobservable Markov-modulated regime switching drift process. By using reduction technique and solving a generalized extended HJB equation, we derive closed-form time-consistent investment–reinsurance strategy and corresponding value function. Moreover, we compare results under partial information with optimal investment–reinsurance strategy when Markov chain is observable. Finally, some numerical illustrations and sensitivity analysis are provided.  相似文献   

2.
In this paper, we revisit the consumption–investment problem with a general discount function and a logarithmic utility function in a non-Markovian framework. The coefficients in our model, including the interest rate, appreciation rate and volatility of the stock, are assumed to be adapted stochastic processes. Following Yong (2012a,b)’s method, we study an N-person differential game. We adopt a martingale method to solve an optimization problem of each player and characterize their optimal strategies and value functions in terms of the unique solutions of BSDEs. Then by taking limit, we show that a time-consistent equilibrium consumption–investment strategy of the original problem consists of a deterministic function and the ratio of the market price of risk to the volatility, and the corresponding equilibrium value function can be characterized by the unique solution of a family of BSDEs parameterized by a time variable.  相似文献   

3.
In this study, we consider an insurer who manages her underlying risk by purchasing proportional reinsurance and investing in a financial market consisting of a risk-free bond and a risky asset. The objective of the insurer is to identify an investment–reinsurance strategy that minimizes the mean–variance cost function. We obtain a time-consistent open-loop equilibrium strategy and the corresponding efficient frontier in explicit form using two systems of backward stochastic differential equations. Furthermore, we apply our results to Vasiček’s stochastic interest rate model and Heston’s stochastic volatility model. In both cases, we obtain a closed-form solution.  相似文献   

4.
In this paper, we consider an optimal time-consistent reinsurance-investment problem incorporating a defaultable security for a mean–variance insurer under a constant elasticity of variance (CEV) model. In our model, the insurer’s surplus process is described by a jump-diffusion risk model, the insurer can purchase proportional reinsurance and invest in a financial market consisting of a risk-free asset, a defaultable bond and a risky asset whose price process is assumed to follow a CEV model. Using a game theoretic approach, we establish the extended Hamilton–Jacobi–Bellman system for the post-default case and the pre-default case, respectively. Furthermore, we obtain the closed-from expressions for the time-consistent reinsurance-investment strategy and the corresponding value function in both cases. Finally, we provide numerical examples to illustrate the impacts of model parameters on the optimal time-consistent strategy.  相似文献   

5.
In this paper, we propose a multi-period portfolio optimization model with stochastic cash flows. Under the mean–variance preference, we derive the pre-commitment and time-consistent investment strategies by applying the embedding scheme and backward induction approach, respectively. We show that the time-consistent strategy is identical to the optimal open-loop strategy. Also, under the exponential utility preference, we develop the optimal strategy for multi-period investment, which is time-consistent. We show that the above two time-consistent strategies are equivalent in some cases. We compare the pre-commitment and time-consistent strategies under different situations with some numerical simulations. The results indicate that the time-consistent strategy is more stable and secure than pre-commitment strategy under the generalized mean–variance criterion.  相似文献   

6.
In this paper, we consider the time-consistent reinsurance–investment strategy under the mean–variance criterion for an insurer whose surplus process is described by a Brownian motion with drift. The insurer can transfer part of the risk to a reinsurer via proportional reinsurance or acquire new business. Moreover, stochastic interest rate and inflation risks are taken into account. To reduce the two kinds of risks, not only a risk-free asset and a risky asset, but also a zero-coupon bond and Treasury Inflation Protected Securities (TIPS) are available to invest in for the insurer. Applying stochastic control theory, we provide and prove a verification theorem and establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) equation. By solving the extended HJB equation, we derive the time-consistent reinsurance–investment strategy as well as the corresponding value function for the mean–variance problem, explicitly. Furthermore, we formulate a precommitment mean–variance problem and obtain the corresponding time-inconsistent strategy to compare with the time-consistent strategy. Finally, numerical simulations are presented to illustrate the effects of model parameters on the time-consistent strategy.  相似文献   

7.
This paper considers the robust optimal reinsurance–investment strategy selection problem with price jumps and correlated claims for an ambiguity-averse insurer (AAI). The correlated claims mean that future claims are correlated with historical claims, which is measured by an extrapolative bias. In our model, the AAI transfers part of the risk due to insurance claims via reinsurance and invests the surplus in a financial market consisting of a risk-free asset and a risky asset whose price is described by a jump–diffusion model. Under the criterion of maximizing the expected utility of terminal wealth, we obtain closed-form solutions for the robust optimal reinsurance–investment strategy and the corresponding value function by using the stochastic dynamic programming approach. In order to examine the influence of investment risk on the insurer’s investment behavior, we further study the time-consistent reinsurance–investment strategy under the mean–variance framework and also obtain the explicit solution. Furthermore, we examine the relationship among the optimal reinsurance–investment strategies of the AAI under three typical cases. A series of numerical experiments are carried out to illustrate how the robust optimal reinsurance–investment strategy varies with model parameters, and result analyses reveal some interesting phenomena and provide useful guidances for reinsurance and investment in reality.  相似文献   

8.
This paper investigates the investment and reinsurance problem in the presence of stochastic volatility for an ambiguity-averse insurer (AAI) with a general concave utility function. The AAI concerns about model uncertainty and seeks for an optimal robust decision. We consider a Brownian motion with drift for the surplus of the AAI who invests in a risky asset following a multiscale stochastic volatility (SV) model. We formulate the robust optimal investment and reinsurance problem for a general class of utility functions under a general SV model. Applying perturbation techniques to the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation associated with our problem, we derive an investment–reinsurance strategy that well approximates the optimal strategy of the robust optimization problem under a multiscale SV model. We also provide a practical strategy that requires no tracking of volatility factors. Numerical study is conducted to demonstrate the practical use of theoretical results and to draw economic interpretations from the robust decision rules.  相似文献   

9.
This study examines optimal investment and reinsurance policies for an insurer with the classical surplus process. It assumes that the financial market is driven by a drifted Brownian motion with coefficients modulated by an external Markov process specified by the solution to a stochastic differential equation. The goal of the insurer is to maximize the expected terminal utility. This paper derives the Hamilton–Jacobi–Bellman (HJB) equation associated with the control problem using a dynamic programming method. When the insurer admits an exponential utility function, we prove that there exists a unique and smooth solution to the HJB equation. We derive the explicit optimal investment policy by solving the HJB equation. We can also find that the optimal reinsurance policy optimizes a deterministic function. We also obtain the upper bound for ruin probability in finite time for the insurer when the insurer adopts optimal policies.  相似文献   

10.
The present paper studies an optimal withdrawal and investment problem for a retiree who is interested in sustaining her retirement consumption above a pre-specified minimum consumption level. Apparently, the withdrawal and investment policy depends substantially on the retiree’s health condition and her time preferences (subjective discount factor). We assume that the health of the retiree can worsen or improve in an unpredictable way over her lifetime and model the retiree’s mortality intensity by a stochastic process. In order to make the decision about the consumption and investment policy more realistic, we assume that the retiree applies a non-exponential discount factor (an exponential discount factor with a small amount of hyperbolic discounting) to value her future income. In other words, we consider an optimization problem by combining four important aspects: asset allocation, sustainable withdrawal, longevity risk and non-exponential discounting. Due to the non-exponential discount factor, we have to solve a time-inconsistent optimization problem. We derive a non-local HJB equation which characterizes the equilibrium optimal investment and consumption strategy. We establish the first-order expansions of the equilibrium value function and the equilibrium strategies by applying expansion techniques. The expansion is performed on the parameter controlling the degree of discounting in the hyperbolic discounting that is added to the exponential discount factors. The first-order equilibrium investment and consumption strategies can be calculated in a feasible way by solving PDEs.  相似文献   

11.
This paper is devoted to the study of optimization of investment, consumption and proportional reinsurance for an insurer with option type payoff at the terminal time under the criterion of exponential utility maximization. The surplus process of the insurer and the financial risky asset process are assumed to be diffusion processes driven by Brownian motions which are non-Markovian in general. Very general constraints are imposed on the investment and the proportional reinsurance processes. Based on the martingale optimization principle, we use BSDE and BMO martingale techniques to derive the optimal strategy and the optimal value function. Some interesting particular cases are studied in which the explicit expressions for the optimal strategy are given by using the Malliavin calculus.  相似文献   

12.
假设保险公司的盈余过程和金融市场的资产价格过程均由可观测的连续时间马尔科夫链所调节, 以最大化终端财富的状态相依的期望指数效用为目标, 研究了保险公司的超额损失再保险-投资问题. 运用动态规划方法, 得到最优再保险-投资策略的解析解以及最优值函数的半解析式. 最后, 通过数值例子, 分析了模型各参数对最优值函数和最优策略的影响.  相似文献   

13.
In this paper, we investigate the optimal time-consistent investment–reinsurance strategies for an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a financial market consisting of one risk-free asset and one risky asset, whose price process follows a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s price process are correlated, which describe the correlation or dependence between the insurance market and the financial market. We introduce the VaR control levels for the insurer to control its loss in investment–reinsurance strategies, which also represent the requirement of regulators on the insurer’s investment behavior. Under the mean–variance criterion, we formulate the optimal investment–reinsurance problem within a game theoretic framework. By using the technique of stochastic control theory and solving the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the optimal investment–reinsurance strategies. In addition, we illustrate the optimal investment–reinsurance strategies by numerical examples and discuss the impact of the risk aversion, the correlation between the insurance market and the financial market, and the VaR control levels on the optimal strategies.  相似文献   

14.
靳冰岩  马世霞 《应用数学》2021,34(2):342-356
在本文中,我们考虑跳扩散模型下具有延迟和违约风险的鲁棒最优再保险和投资问题,保险人可以投资无风险资产,可违约的债券和两个风险资产,其中两个风险资产遵循跳跃扩散模型且受到同种因素带来共同影响而相互关联.假设允许保险人购买比例再保险,特别地再保险保费利用均值方差保费原则来计算.在考虑与绩效相关的资本流入/流出下,保险公司的...  相似文献   

15.
In this article, we consider the optimal reinsurance and dividend strategy for an insurer. We model the surplus process of the insurer by the classical compound Poisson risk model modulated by an observable continuous-time Markov chain. The object of the insurer is to select the reinsurance and dividend strategy that maximizes the expected total discounted dividend payments until ruin. We give the definition of viscosity solution in the presence of regime switching. The optimal value function is characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation and a verification theorem is also obtained.  相似文献   

16.
This paper studies the time-consistent investment strategy for a defined contribution (DC) pension plan under the mean–variance criterion. Since the time horizon of a pension fund management problem is relatively long, two background risks are taken into account: the inflation risk and the salary risk. Meanwhile, there are a risk-free asset, a stock and an inflation-indexed bond available in the financial market. The extended Hamilton–Jacobi–Bellman (HJB for short) equation of the equilibrium value function and the verification theorem corresponding to our problem are presented. The closed-form time-consistent investment strategy and the equilibrium efficient frontier are obtained by stochastic control technique. The effects of the inflation and stochastic income on the equilibrium strategy and the equilibrium efficient frontier are illustrated by mathematical and numerical analysis. Finally, we compare in detail the time-consistent results in our paper with the pre-commitment one and find the distinct properties of these two results.  相似文献   

17.
In this paper, we study an insurer’s reinsurance–investment problem under a mean–variance criterion. We show that excess-loss is the unique equilibrium reinsurance strategy under a spectrally negative Lévy insurance model when the reinsurance premium is computed according to the expected value premium principle. Furthermore, we obtain the explicit equilibrium reinsurance–investment strategy by solving the extended Hamilton–Jacobi–Bellman equation.  相似文献   

18.
This paper studies the optimal consumption–investment strategy with multiple risky assets and stochastic interest rates, in which interest rate is supposed to be driven by the Vasicek model. The objective of the individuals is to seek an optimal consumption–investment strategy to maximize the expected discount utility of intermediate consumption and terminal wealth in the finite horizon. In the utility theory, Hyperbolic Absolute Risk Aversion (HARA) utility consists of CRRA utility, CARA utility and Logarithmic utility as special cases. In addition, HARA utility is seldom studied in continuous-time portfolio selection theory due to its sophisticated expression. In this paper, we choose HARA utility as the risky preference of the individuals. Due to the complexity of the structure of the solution to the original Hamilton–Jacobi–Bellman (HJB) equation, we use Legendre transform to change the original non-linear HJB equation into its linear dual one, whose solution is easy to conjecture in the case of HARA utility. By calculations and deductions, we obtain the closed-form solution to the optimal consumption–investment strategy in a complete market. Moreover, some special cases are also discussed in detail. Finally, a numerical example is given to illustrate our results.  相似文献   

19.
This paper considers the robust equilibrium reinsurance and investment strategies for an ambiguity-averse insurer under a dynamic mean–variance criterion. The insurer is allowed to purchase excess-of-loss reinsurance and invest in a financial market consisting of a risk-free asset and a credit default swap (CDS). Following a game theoretic approach, robust equilibrium strategies and equilibrium value functions for the pre-default case and the post-default case are derived, respectively. For the ambiguity-averse insurer, in general the equilibrium strategies can be characterized by unique solutions to some algebraic equations. For the degenerate case with an ambiguity-neutral insurer, closed-form expressions of equilibrium strategies and equilibrium value functions are obtained. Numerical examples demonstrate that the consideration of model uncertainty and CDS investment improves the insurer’s utility. In this regard, our paper establishes theoretical and numerical support for the importance of ambiguity aversion, credit risk and their interplay in insurance business.  相似文献   

20.
This paper analyzes the equilibrium strategy of a robust optimal reinsurance-investment problem under the mean–variance criterion in a model with jumps for an ambiguity-averse insurer (AAI) who worries about model uncertainty. The AAI’s surplus process is assumed to follow the classical Cramér–Lundberg model, and the AAI is allowed to purchase proportional reinsurance or acquire new business and invest in a financial market to manage her risk. The financial market consists of a risk-free asset and a risky asset whose price process is described by a jump-diffusion model. By applying stochastic control theory, we establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations. Furthermore, we derive both the robust equilibrium reinsurance-investment strategy and the corresponding equilibrium value function by solving the extended HJB system of equations. In addition, some special cases of our model are provided, which show that our model and results extend some existing ones in the literature. Finally, the economic implications of our findings are illustrated, and utility losses from ignoring model uncertainty, jump risks and prohibiting reinsurance are analyzed using numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号