首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blending of PLA with poly(butylene-adipate-co-terephthalate) (PBAT) is a promising strategy to achieve a toughened multiphase material. The blends ductility could be further improved through reactive compatibilization, i.e. inducing the formation of comb PLA-PBAT copolymers during the melt blending. In the present work a non-selective strategy was adopted which consisted in the use of a peroxide, 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane. The phase morphology development and the final properties (torque, fluidity in the melt, tensile behaviour, thermal and dynamical-mechanical features) of the blends were studied as a function of the peroxide concentration. The elongation at break was improved up to a maximum value thanks to this approach and a corresponding minimum was observed in the value of the dispersed phase diameter. A structural characterization of the macromolecules formed during the reactive process was attempted by using size exclusion chromatography of the blends and comparison with the pure polymers obtained by processing in the presence of the peroxide.  相似文献   

2.
New polymer-clay nanocomposites composed of poly(lactic acid) and a novel organoclay based on cocamidopropylbetaine (CAB) and sodium montmorillonite (MMT) were prepared by solution casting and characterised by X-Ray Diffraction Analysis (XRDA), Transmission Electron Microscopy (TEM) and Thermogravimetric Analysis (TGA). A similar series of composites based on PLA and Cloisite 30B, a commercially available organoclay, were prepared for comparison. The thermal stability of the CAB-MMT organoclays decreased with increasing surfactant loading. Experimental organoclays with an organic content similar to that of the commercial organoclay were found to be of comparable thermal stability. XRDA analysis of the PLA-organoclay nanocomposites showed that PLA intercalated the gallery space of both types of organoclay to similar extents and the increased spacing was confirmed by TEM. The thermal stabilities of the PLA-organoclay composites based on CAB-MMT were higher than those based on the commercial organoclay.  相似文献   

3.
We improved the recyclability of mixed poly(ethylene-terephthalate) (PET) and poly(lactic acid) (PLA) bottle waste. We made uncompatibilized and compatibilized PET/PLA blends of different weight ratios with a twin-screw extruder. Then, we analysed the mechanical properties, the miscibility and the thermal stability of the blends with and without compatibilizers. From the change in intrinsic viscosities (IV), we concluded that different reactions occur between the polymer chains due to the compatibilizers. We observed that when ethylene-butyl acrylate-glycidyl methacrylate (E-BA-GMA) as compatibilizer was added, the blends became tougher; elongation at break and Charpy impact strength increased, but Young's modulus of the blends decreased. In addition, the compatibilizers improved the thermal stability of the blends and this may have been caused by a number of mechanisms.  相似文献   

4.
通过热加工的方法制备了一系列含三烯丙基异氰脲酸脂(TAIC)的PLA/纤维复合材料,并在氮气保护下用γ射线诱导发生辐射交联反应.通过热变形温度实验表明辐射交联后,复合材料的热变形温度(HDT)都有提高,特别是当纤维质量分数超过20%时,即使在很小的吸收剂量下,复合材料的HDT从60℃左右大幅提高到120℃以上.HDT的提高只与纤维的含量有关而与纤维种类无关.凝胶抽提与红外光谱实验结果表明,复合材料在辐射后所形成的复杂交联结构,可能是导致其HDT大幅提高的重要原因.  相似文献   

5.
This study reports the compatibility of the biobased polymers poly(3-hydroxybutyrate-co-3- -hydroxyhexanoate) (PHBH) and poly(lactic acid) (PLA), as well as the effect of the addition of a reactive epoxy compatibilizer (REC) to the PHBH/PLA blend. The chemical structure, thermal performance, surface morphology and mechanical properties of the blends were measured using fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic thermo-mechanical analysis, thermogravimetric analysis, scanning electron microscopy, and impact and tensile testing.PHBH and PLA were partially compatible, and a PHBH/PLA mass ratio of 80:20 was selected for evaluation with an REC. The REC decreased the difference between the glass-transition temperatures of PHBH and PLA, decreased the particle size of the dispersed phase of the PHBH/PLA blend and produced uniform particle distribution. Moreover, the REC improved the elongation at break and impact strength of the PHBH/PLA blend. These results show that the addition of an REC improves the compatibility of PHBH and PLA.  相似文献   

6.
生物可降解材料聚乳酸结晶行为研究进展   总被引:1,自引:0,他引:1  
聚乳酸是一种具有良好生物相容性、可生物降解的热塑性脂肪族聚脂,是一种环境友好材料。聚乳酸的结晶性能对其力学性能和降解速率有着重要的影响,因而其结晶行为也逐渐成为人们研究的热点。本文针对聚乳酸的结晶行为综述了聚乳酸及其共混、共聚体系的最新研究进展。  相似文献   

7.
Poly(lactic) acid (PLA) is a compostable biopolymer and has been commercialised for the for the manufacture of short-shelf life products. As a result, increasing amounts of PLA are entering waste management systems and the environment; however, the degradation mechanism is unclear. While hydrolysis of the polymer occurs abiotically at elevated temperature in the presence of water, potential catalytic role for microbes in this process is yet to be established. In this study, we examined the degradation of PLA coupons from commercial packaging at a range of temperatures (25°, 37°, 45°, 50° and 55 °C) in soil and compost and compared with the degradation rates in sterile aqueous conditions by measuring loss of tensile strength and molecular weight (Mw). In addition, in order to assess the possible influence of abiotic soluble factors in compost and soil on degradation of PLA, degradation rates in microorganism-rich compost and soil were compared with sterile compost and soil extract at 50 °C. Temperature was determined to be the key parameter in PLA degradation and degradation rates in microorganism-rich compost and soil were faster than in sterile water at temperatures 45° and 50 °C determined by tensile strength and Mw loss. Furthermore, all tensile strength was lost faster after 30 and 36 days in microorganism-rich compost and soil, respectively, than in sterile compost and soil extract, 57 and 54 days, respectively at 50 °C. Significantly more Mw, 68% and 64%, was lost in compost and soil, respectively than in compost extract, Mw, 53%; and in soil extract, 57%. Therefore, degradation rates were faster in microorganism-rich compost and soil than in sterile compost and soil extract, which contained the abiotic soluble factors of compost and soil at 50 °C. These comparative studies support a direct role for microorganisms in PLA degradation at elevated temperatures in humid environments. No change in tensile strength or Mw was observed either 25° or 37 °C after 1 year suggesting that accumulation of PLA in the environment may cause future pollution issues.  相似文献   

8.
Poly(lactic acids) (PLAs) with different molecular weights (MWs) were prepared by autoclaving a commercial PLA for different time periods. The harvested PLAs were characterized by different techniques. Gel permeation chromatography results showed that the MW of PLA decreased with increasing autoclaving time. The Mark–Houwink parameters for PLA in dichloromethane at 25 °C were determined for the first time. The melting endotherms, revealed by differential scanning calorimetry, were observed for the 60 and 120 min-autoclaved PLAs (cf. PLA60 and PLA120) but hardly detected for the original and 30 min-autoclaved PLA (PLA30). The PLA120 exhibited higher crystallinity than that of PLA60. Thermogravimetric analysis showed that the activation energy for thermal degradation decreased from 186 kJ mol−1 to 140 kJ mol−1 for original PLA and PLA120. The hydrophilicity of the PLA increased, indicating higher number of COOH groups, with increasing autoclaving time, as revealed by the contact angle measurement. Rheological data showed that the complex viscosity and storage modulus of PLA decreased with increasing autoclaving time due to the decreasing MW. Unlike original PLA and PLA30, PLA60 and PLA120 exhibited Newtonian fluid behavior at all test frequencies.  相似文献   

9.
Biodegradable poly(lactic acid) is regarded as one of the most promising biopolymers with large market potential, but its applications are limited by the poor mechanical properties, since PLA is rigid and brittle. To enhance its mechanical, thermal and processability properties, at this study the authors use small molecules maleic acid (MA) and its propyl ester derivatives monopropyl maleate (MPM) and dipropyl maleate (DPM) as alternative plasticizers. The morphological, thermal, and mechanical properties of plasticized PLA were evaluated by DSC, FTIR, 1H NMR, DMA, PLOM and SEM into two controlled environment desiccators: SiO2 and water-saturated atmosphere. The results show that the increase in the substitution of MA increasing PLA plasticization ability, decreasing the PLA Tg from 48 °C to 5 °C and increasing percentage strain, while the presence of carboxyl groups from MA and MPM entails in water absorption to the bulk of the films which leads to a hydrolysis of MPM to MA. FTIR and 1H NMR confirmed these results and show that the hydrolysis and plasticizer evaporation occurs as a function of time. SEM images of fractured films analyzed after conditioned during a one-month present porous surface for PLA/MPM. In conclusion, maleate propyl esters have excellent PLA plasticizing properties and could improve the (using, market employment of this polymer.  相似文献   

10.
Using acetyl tributyl citrate (ATBC) and poly(1,3-butylene adipate) (PBA) as the plasticizer of poly(lactic acid) (PLA) and carbon black (CB) as reinforced filler, high performance composites were prepared in melting blend. Fourier transform infrared spectroscopy revealed that the interaction existed between PLA and CB, and plasticizer could improve this interaction. The rheology showed that plasticizer could obviously improve the fluidity of the composites, but just the reverse for CB. Scanning electron microscopy revealed that the addition of plasticizer facilitated the dispersion of the CB in PLA. With the increasing of CB content, the enforcement effect, storage modulus and glass transition temperature increased. The elongation at break of PLA/PBA (30 wt%) could be above 600%, which was higher than the same weight ATBC plasticized PLA. Moreover, CB could restrain the thermally induced migration of plasticizer in plasticized PLA. Compared with ATBC, PBA was a thermal stable plasticizer for PLA.  相似文献   

11.
通过溶液浇铸法制备不同组分的左旋聚乳酸(PLLA)和聚(L-2-羟基-3-甲基丁酸)(PL-2H3MB)共混物.运用差示扫描量热仪(DSC)、偏光显微镜(POM)、广角X射线衍射(WAXD)和热重分析仪(TGA)分析共混物的结晶、熔融行为和热稳定性.通过观察到DSC加热曲线中新的熔融峰判断PLLA和PL-2H3MB共晶...  相似文献   

12.
Poly(lactic acid) (PLA) was depolymerized by methanol in the presence of a novel catalyst: ionic liquids. It was found that the purification method of the main products in the methanolysis catalyzed by ionic liquids was simpler than that of traditional compounds, such as sulfuric acid. Qualitative analysis indicated that the main product in the methanolysis process was methyl lactate. The influences of experimental parameters, such as the amount of ionic liquids, methanolysis time, reaction temperature, and dosages of methanol on the conversion of PLA, yield of methyl lactate were investigated. Under the optimum conditions, using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as catalyst, results showed that the ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PLA and yield of methyl lactate. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PLA was a first-order kinetic reaction with activation energy of 38.29 kJ/mol. In addition, a possible catalysis mechanism of the methanolysis of PLA was proposed.  相似文献   

13.
A series of aliphatic polyesters, in particular poly(ethylene succinate), having different molecular weights, were synthesized from succinic acid and ethylene glycol, following the melt polycondensation process. Intrinsic viscosities (IV), GPC, DSC, 1H NMR and carboxylic end group measurements were used for their characterisation. From thermogravimetric analysis, it was concluded that the molecular weight of polyesters achieved during polycondensation are strongly related to thermal stabilities of initial oligomers. In order to synthesise high molecular weight polyesters, the number average molecular weight of oligomers must not be lower than 2300–3000 g/mol, since thermal decomposition begins at temperatures lower than 200 °C. However, even in that case, polycondensation temperatures must not exceed 230–240 °C. From TGA studies, it was found that sample having different molecular weights could be divided into two groups characterized by different thermal stability. In the first group, belong samples with intrinsic viscosity of IV = 0.08 dL/g and in the second one all the other samples (IV > 15 dL/g). From kinetic analysis of thermal degradation, it was found that degradation of all polyesters takes place in three stages, its one corresponding to a different mechanisms. Degradation of samples with low molecular weight is more complex that that of polyesters having high molecular weights. The values of the activation energy and the exponent n for the two groups of samples—with different molecular weight—are similar, regarding the first two mechanisms, while there is an alteration in the case of the third mechanism.  相似文献   

14.
Biodegradable composite films of poly(lactic acid) (PLA)/eggshell powder (ESP) were prepared by the composite film casting method using chloroform as the solvent. ESP was loaded in PLA in 1 to 5 wt.%. The films were subjected to tensile, FT-IR spectral, thermogravimetric, X-ray, and microscopic analyses. The tensile strength and modulus of the composite films were found to be higher than those of PLA and increased with ESP content up to 4 wt.% and then decreased. A reverse trend was observed in the case of percentage elongation at break. The X-ray diffractograms of the composite films indicated an increase in crystallinity with ESP content. The optical micrographs indicated uniform distribution of ESP particles in the composite films. However, the fractographs indicated agglomeration of ESP particles at 5 wt.% loading. The FT-IR spectra revealed no specific interactions between PLA and ESP. The thermal stability of the composite films increased with ESP content.  相似文献   

15.
以胆固醇半琥珀酸酰氯对NaIO4氧化的醛化葡聚糖进行疏水改性,制备了醛基化双亲性葡聚糖衍生物Chol-Dex-CHO;利用醛基与己二酰肼酰腙化反应,实现葡聚糖主链的氨基化;生物素经二环已基碳二亚胺活化后与双亲性葡聚糖衍生物主链上的氨基偶联,形成生物素化(3%)双亲性葡聚糖(Chol-Dex-Biotin).将聚乳酸(PLA)与Chol-Dex-Biotin溶液共透析可形成亚微粒子,双亲性多糖可通过疏水基团锚定于PLA亚微粒子表面,透射电子显微镜与原子力显微镜测试观察到清晰的球形核壳结构,激光粒度仪测定亚微粒子粒径与粒径分布表明调节Chol-Dex-Biotin与PLA的配比可以控制亚微粒子的粒径(150~200 nm),X-射线光电子能谱证明亚微粒表面存在Chol-Dex-Biotin.在此基础上,以FITC标记的转铁蛋白(Tf-FITC)和生物素化兔IgG为模型生物功能因子,分别通过共价偶联及生物素-亲合素物理结合两种机理对葡聚糖包覆的PLA纳米微粒表面进行多重生物因子功能化修饰,得到表面Tf和IgG双重修饰的PLA亚微粒子(Tf-PLA-IgG submicron particles).亚微粒子表面Tf和兔IgG的结合分别通过荧光显微镜观测和抗IgG-辣根过氧化氢酶(IgG-HRP)显色反应验证.  相似文献   

16.
Binary and ternary blends composed of poly (lactic acid) (PLA), thermoplastic starch (TPS) and glycidyl methacrylate grafted poly (ethylene octane) (GPOE) were prepared using Haake Mixer. The mechanical morphology, thermal properties, water absorption, and degradation properties of the blends were also investigated. The elongation at break and impact strength of the ternary blends were greatly increased by the filling of GPOE. Compared to non-GPOE binary blends, the morphology of ternary blends with GPOE indicated that starch granules melted and there was good compatibility between PLA matrix and TPS. The mechanism and schematic diagram of the reactions in PLA, TPS, and GPOE were proposed and proved by testing and observing the morphology. Moreover, the biodegradation and thermal decomposition were studied through compost testing and thermal gravimetric analysis, respectively. Biodegradation results indicated that the blends have the excellent biodegrade ability.  相似文献   

17.
PLA and its nanocomposite films based on modified montmorillonite (CLO30B) or fluorohectorite (SOM MEE) and unmodified sepiolite (SEPS9) were processed at a clay loading of 5 wt% and hydrolytically degraded at 37 and 58 °C in a pH 7.0 phosphate-buffered solution. An effective hydrolytic degradation for neat PLA and nanocomposites was obtained at both temperatures of degradation, with higher extent at 58 °C due to more extensive micro-structural changes and molecular rearrangements, allowing a higher water absorption into the polymer matrix.The addition of CLO30B and SEPS9 delayed the degradation of PLA at 37 °C due to their inducing PLA crystallization effect and/or to their high water uptake reducing the amount of water available for polymer matrix hydrolysis. The presence of SOM MEE also induced polymer crystallization, but it was also found to catalyze hydrolysis of PLA. Concerning hydrolysis at 58 °C, the presence of any nanoparticle did not significantly affect the degradation trend of PLA, achieving similar molecular weight decreases for all the studied materials. This was related to the easy access of water molecules to the bulk material at this temperature, minimizing the effect of polymer crystallinity clay nature and aspect ratio on the polymer degradation.  相似文献   

18.
Using rubber to toughen polylactide (PLA) is always accompanied by the sharp reduction in stiffness. Herein, PLA/poly (methyl methacrylate) grafted natural rubber (NR-PMMA) thermoplastic vulcanizates (TPVs) with balanced stiffness-toughness were fabricated. With the addition of 40 wt % NR-PMMA, the impact strength and tensile toughness of PLA/NR-PMMA TPV significantly improved to about 102.7 kJ/m2 and 66.1 MJ/m3, respectively, compared with those of 2.7 kJ/m2 and 2.4 MJ/m3 for the pure PLA. Meanwhile, the yielding stress was maintained at 34.5 MPa. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of in-situ interfacial compatibilization between PLA and rubber phases. Both tensile and impact toughening mechanism were studied and deduced as considerable energy dissipation provided by the continuous rubber phase. Instrumented notched impact tests demonstrated that the energy dissipating in crack propagation process contributed to the main part of impact toughness. In addition, a novel toughening model based on bicontinuous structure was incorporated, which showed good applicability in predicting the impact strength of PLA/NR-PMMA TPVs.  相似文献   

19.
The kinetics of the thermal decomposition of processed poly(lactic acid) has been studied and compared to that of raw material. Processing consisted of two different industrial processes: 1) Injection (with or without further annealing); 2) Extrusion followed by injection (with or without further annealing). For this study, an integral method (based on the general analytical solution), differential methods (based on the first conversion derivative and on the 2nd derivative) and special methods have been used. On the other hand, a method based on the maximum decomposition rate has been considered. By doing that, the kinetic parameters (reaction order, frequency factor and activation energy) have been determined. It has been demonstrated that there was only one first-order reaction for the entire conversion range. A new equation (based on the second conversion derivative plot as a function of temperature) was developed allowing the calculation of the reaction order. This method quantifies peak areas (and not peak heights, as reported by Kissinger). It is very useful because it considers both peak shape and width. Activation energy, as determined by using the general analytical solution, was 318 kJ/mol for unprocessed poly(lactic acid) whereas it was 280 ± 5 kJ/mol for processed materials. All the processed materials had approximately the same thermal stability (T5 = 333.0-335.8 °C, at 95% confidence level), which was slightly lower than that of unprocessed materials (T5 = 337.5 °C). PLA melting (during extrusion and injection) was responsible for depolymerization reactions (the small molecules formed during melting processes can volatilize readily).  相似文献   

20.
A new dicarboxylic acid chloride (2) bearing three preformed imide rings was synthesized by treating N-(3,5-diaminophenyl)phthalimide with trimellitic anhydride followed by refluxing with thionyl chloride. A novel family of aromatic poly(ester-imide)s with inherent viscosities of 0.27-0.35 dl g−1 were prepared from 2 with various bisphenols such as resorcinol (3a), hydroquinone (3b), 2,2′-dihydroxybiphenyl (3c), 4,4′-dihydroxybiphenyl (3d), bisphenol-A (3e), 2,2′-dimethyl-4,4′-dihydroxybiphenyl (3f), 1,5-dihydroxynaphthalene (3g), 2,7-dihydroxynaphthalene (3h), and 2,2′-dihydroxy-1,1′-binaphthyl (3i) by high-temperature solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher. All of the resulted polymers were fully characterized by FT-IR and NMR spectroscopy and elemental analyses. The poly(ester-imide)s exhibited excellent solubility in some polar organic solvents. From differential scanning calorimetry, the polymers showed glass-transition temperatures between 259 and 353 °C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis and the 10% weight loss temperatures of the poly(ester-imide)s were found to be in the range between 451 and 482 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide-angle X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号