首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 研究了超声清洗和激光预处理两种后处理手段对减反膜的损伤特性的影响。采用电子束蒸发技术制备了1 064 nm减反膜,利用超声清洗及激光预处理的方法分别对样品进行处理,并对处理前后的样品分别进行激光损伤阈值测试及破斑深度测量。结果表明:处理后减反膜的损伤阈值均有所提升,但激光预处理的阈值增强效果更加明显;超声清洗前后的破斑深度没有大的变化,而激光预处理后的破斑深度比处理前浅得多;原因在于超声清洗只能去除表面杂质,激光预处理可减少和抑制膜层内较深处的缺陷。  相似文献   

2.
A wavelet-transformed ultrasonic propagation imaging method capable of ultrasonic propagation imaging in the frequency domain was developed and applied as a new structural damage or flaw visualization algorithm. Since the wavelet-transformed ultrasonic propagation imaging method has strong frequency selectivity, it can visualize the propagation of ultrasonic waves of a specific frequency (for example, to isolate ultrasonic mode of interest and a damage-related ultrasonic wave). The strong frequency selectivity of the wavelet-transformed ultrasonic propagation imaging method was demonstrated, isolating only the zeroth-order asymmetrical mode of the fundamental Lamb wave modes in an anisotropic carbon fiber-reinforced plastic plate with a thickness of 5 mm. The wavelet-transformed ultrasonic propagation imaging method can also convert a complex time domain multiple wavefield into a simple frequency domain single wavefield. This feature enables easy interpretation of the results, and facilitates the precise evaluation of the location and size of structural damage or flaws. We demonstrated this capability by detecting a disbond in a sandwich structure made of Al-alloy skins and a foam core. A disbond with a diameter of 20 mm, which is representative of a common manufacturing flaw, was successfully detected, localized, and evaluated. Since a method to determine the allowable maximum pulse repetition frequency depending on target materials and structures was found by investigating the residual wave caused from the previous laser impinging, our laser ultrasonic system can scan rapidly the target with an optimal pulse repetition rate. In addition, the proposed wavelet-transformed ultrasonic propagation imaging method can visualize damage or flaw without the need for reference data from the intact state of the structure. Hence, we propose the wavelet-transformed ultrasonic propagation imaging approach for automatic inspection of in-service engineering structures, or in-process quality inspection in manufacturing.  相似文献   

3.
Wind turbine blade failure is the most prominent and common type of damage occurring in operating wind turbine systems. Conventional nondestructive testing systems are not available for in situ wind turbine blades. We propose a portable long distance ultrasonic propagation imaging (LUPI) system that uses a laser beam targeting and scanning system to excite, from a long distance, acoustic emission sensors installed in the blade. An examination of the beam collimation effect using geometric parameters of a commercial 2 MW wind turbine provided Lamb wave amplitude increases of 41.5 and 23.1 dB at a distance of 40 m for symmetrical and asymmetrical modes, respectively, in a 2 mm-thick stainless steel plate. With this improvement in signal-to-noise ratio, a feasibility study of damage detection was conducted with a 5 mm-thick composite leading edge specimen. To develop a reliable damage evaluation system, the excitation/sensing technology and the associated damage visualization algorithm are equally important. Hence, our results provide a new platform based on anomalous wave propagation imaging (AWPI) methods with adjacent wave subtraction, reference wave subtraction, reference image subtraction, and the variable time window amplitude mapping method. The advantages and disadvantages of AWPI algorithms are reported in terms of reference data requirements, signal-to-noise ratios, and damage evaluation accuracy. The compactness and portability of the proposed UPI system are also important for in-field applications at wind farms.  相似文献   

4.
Wavelet transform based techniques are used for signal-to-noise ratio (SNR) enhancement in ultrasonic non-destructive testing and evaluation of strong sound scattering materials. The overall denoising performance of a wavelet signal processor is conditioned by several processing parameters, including the type of wavelet, thresholding method, and threshold selection rules. Different thresholding procedures and threshold selection rules are analysed in this paper using the discrete wavelet transform and decomposition level dependent thresholds. Global performance is evaluated by means of the SNR enhancement using synthetic grain noise registers with an incrusted flaw signal, with different values of the input SNR, and experimental ultrasonic traces acquired from a carbon fibre reinforced plastic composite block.  相似文献   

5.
The detection of drilling-induced delamination in composite components is a vital and challenging task in aviation industry. Numerous key components of aircrafts are made of composite materials, and drilling is often a final operation during assembly. Drilling-induced delamination is a very serious defect that significantly reduces the structural reliability, but it is rather difficult to be detected effectively due to its special location. A novel application of laser ultrasonic technique for the detection of drilling-induced delamination in composites is presented in this paper. A carbon fiber reinforced plastic laminate with drilling holes was made as specimen. A laser ultrasonic system was constructed and experiments were performed to detect the drilling-induced delamination, based on propagation characteristic of ultrasonic waves generated by pulse laser with a wavelength of 1064 nm and pulse duration of 10 ns. A laser interferometer based on two wave mixing is used to measure ultrasonic wave signals, and the morphology features of the delamination are imaged clearly by laser ultrasonic C-scan testing. The results proved that the laser ultrasonic technique is a feasible and effective method for the detection of drilling-induced delamination in composite components.  相似文献   

6.
Damage diagnosis for turbine rotors plays an essential role in power plant management. Ultrasonic non-destructive examinations (NDEs) have increasingly been utilized as an effective tool to provide comprehensive information for damage diagnosis. This study presents a general methodology of damage diagnosis for turbine rotors using three-dimensional adaptive ultrasonic NDE data reconstruction techniques. Volume reconstruction algorithms and data fusion schemes are proposed to map raw ultrasonic NDE data back to the structural model of the object being examined. The reconstructed volume is used for automatic damage identification and quantification using region-growing algorithms and the method of distance-gain-size. Key reconstruction parameters are discussed and suggested based on industrial experiences. A software tool called AutoNDE Rotor is developed to automate the overall analysis workflow. Effectiveness of the proposed methods and AutoNDE Rotor are explored using realistic ultrasonic NDE data.  相似文献   

7.
Laser ultrasonic wave propagation imaging methods have great potential for integrated structural health management and non-destructive evaluation. However, application of these techniques to complex structures in the field is difficult because they give rise to complicated wave propagation patterns. We developed an anomalous wave propagation imaging method with adjacent wave subtraction using laser ultrasonic scanning to solve this problem. The proposed method is suitable for non-destructive evaluation of complex structures because it highlights the propagation of anomalous waves related to structural discontinuities, and suppresses complex incident waves without the need of pre-stored reference data. In this study, the method was applied to a real composite wing subjected to bending and impact tests. The method enhanced the visibility of the anomalous waves related to damages such as stringer tip debonding, skin-spar debonding, and invisible impact damage. Based on these anomalous waves, variable time window amplitude mapping was performed to show the damage location, size, and shape resemble to the actual damage. Comparisons showed that the methods performed better than the ultrasonic A-scan in terms of damage detection and sizing accuracy. The presence of structural elements such as spars, stringers, ribs, and surface-mounted PZT elements did not adversely affect the inspection. The proposed wing test setup with a built-in ultrasonic propagation imaging system for automatic NDE could be easily expanded throughout a hanger for maintenance inspection.  相似文献   

8.
In this paper, an active damage detection system for composite laminates is introduced. A fiber Bragg grating (FBG) was employed as an embedded sensor for detecting ultrasonic Lamb wave generated by a piezoelectric (PZT) actuator, inside the laminates. There were two different configurations for the system, making use of a broadband light source and a laser source, respectively. It was found that the use of a laser source could provide a higher sensitivity, so it was preferred in an ultrasonic signal acquisition unit for damage detection. When a delamination is developed in composite structures, the propagation characteristics of Lamb wave is then changed. According to altered signals, the types and natures of delamination inside the structures can be evaluated. In this experiment, glass fiber-reinforced epoxy (GFRP) composite beams were used to study the feasibility of our proposed detection technique. FBG sensors were embedded in different layers of the composite beams. The responses of FBG sensors from both intact and delaminated composite beams were then compared. Finally, the acquired Lamb wave signals corresponding to different delamination sizes and locations were examined.  相似文献   

9.
Declercq NF  Degrieck J  Leroy O 《Ultrasonics》2004,42(1-9):173-177
Ultrasonic polar scans have already proved to be well-suited as a practical means of characterizing fiber reinforced composite plates. The method consists of registering the reflected or transmitted sound amplitude as a function of each possible angle of incidence. It is hence an amplitude measurement by which it differs from more common 'time of flight' measurements. Ultrasonic polar scans are actually a fingerprint of a composite laminate. One of the many promising applications of the ultrasonic polar scan is the monitoring of fiber reinforced composites in service. Especially the progress of fatigue damage can be monitored easily and nondestructively. This paper presents numerical simulations of the influence of fatigue on ultrasonic polar scans as well as some experimental results.  相似文献   

10.
We investigated the time variation of ultrasonic degassing for air-saturated water and degassed water with a sample volume of 100 mL at frequencies of 22, 43, 129, 209, 305, 400, 514, 1018, and 1960 kHz and ultrasonic power of 15 W. Ultrasonic degassing was evaluated by dissolved oxygen concentration. Ultrasonic degassing was also investigated at a frequency of 1018 kHz and ultrasonic powers of 5, 10, 15, and 20 W. The dissolved oxygen concentration varied with the ultrasonic irradiation time and became constant after prolonged ultrasonic irradiation. The constant dissolved oxygen concentration value depended on the frequency and ultrasonic power but not the initial dissolved oxygen concentration. The degassing rate at 101.3 kPa was higher in the frequency range of 200 kHz to 1 MHz. The frequency dependence of the degassing rate was almost the same as that of the sonochemical efficiency obtained by the potassium iodide (KI) method. Ultrasonic degassing in the frequency range of 22–1960 kHz was also investigated under reduced pressure of 5 kPa. Degassing was accelerated when ultrasonic irradiation was applied under reduced pressure. However, under a reduced pressure of 5 kPa, the lower the frequencies, the higher is the degassing rate. The sonochemical reaction rate was examined by the KI method for varying dissolved air concentrations before ultrasonic irradiation. Cavitation did not occur when the initial dissolved oxygen concentration was less than 2 mg·L−1. Therefore, the lower limit of ultrasonic degassing under 101.3 kPa equals 2 mg·L−1 dissolved oxygen concentration. A model equation for the time variation of dissolved oxygen concentration due to ultrasonic irradiation was developed, and the degassing mechanism was discussed.  相似文献   

11.
Ultrasonic electroplating produces various effects, including refinement of the plating film structure, by generating localized agitation through cavitation bubbles. However, details of the agitation mechanism have not been clarified because ultrasonic cavitation is very small in scale and occurs rapidly, and its reproducibility is low. Therefore, using laser-induced cavitation, which can generate cavitation similar to ultrasonic waves with high reproducibility, the author attempted to elucidate the conditions and frequency of cavitation generation that affect the agitation phenomenon in ultrasonic electroplating. By controlling the laser irradiation position, three different cavitation conditions were established, and the microstructures of the plated films produced were compared. Microstructural refinement was the most advanced under the condition of microjet generation. The frequency of cavitation generation at any position in the ultrasonic electroplating was estimated to be < 1 Hz.  相似文献   

12.
We present the correction of a quadratic phase error in two-wavelength digital holographic interferometry using laser diodes. This phase error arises from numerical reconstructions of wavefronts from digital holograms based on the Fresnel diffraction integral. To correct the quadratic phase error, it is numerically produced by computer on the basis of the theoretical prediction and is subtracted from the phase difference map in two-wavelength digital holographic interferometry. Experimental results show that the method of correction in this paper is useful for two-wavelength digital holographic interferometry using laser diodes.  相似文献   

13.
The anomalous wave propagation imaging (AWPI) method is proposed for the laser ultrasonic propagation imaging system using a Q-switched laser and a laser mirror scanner to highlight the anomalies in complex structures. The AWPI algorithm was developed based on the observation that the waves from two adjacent scanning points are very similar, and that the propagation direction of the incident wave is different from that of the anomalous wave caused by structural anomalies including damage. The structural anomaly is highlighted by suppressing the incident waves and exaggerating the anomalous wave through adjacent waves subtraction after arrival time and amplitude matching. The variable time window amplitude mapping (VTWAM) method was also developed, based on the difference in arrival time between the residual incident wave and anomalous waves. The VTWAM method enhances anomaly visualization and sizing, notably for composite damages, by mapping the amplitudes of the confining wave within the damage. Our results showed that the AWPI increased the signal-to-noise ratio of a back-surface hole damage in a steel plate by 13.76 dB, while in another inspection of a composite wing with two impact damages, the AWPI results enhanced by the VTWAM compared favorably with the results of the immersion ultrasonic C-scan. The AWPI and VTWAM adopt implicit spatial referencing wherein all necessary data can be obtained through a single-time scan, therefore circumvent the disadvantages of conventional temporal baseline referencing.  相似文献   

14.
Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects.  相似文献   

15.
无铆连接是一种薄板材料连接新技术,可在无需预成孔和表面预处理情况下,实现同种、异种、多层薄板材料高效连接,但由于无铆接头静力学性能较低,极大地限制了该连接技术的推广与发展。为解决这一难题,本文选用5A06铝合金与TA1钛合金进行同种金属无铆铆接,并在此基础上进行了超声金属焊接复合实验,基于静拉伸测试和扫描电镜分析,探究超声焊对无铆接头力学性能的强化机制。试验结果表明:超声焊可有效提升无铆接头力学性能,特别是对于铝合金无铆接头;超声焊使得铝合金板塑性提高,钛合金板则得到硬化;超声焊后无铆接头的受力形式发生改变,从颈部受力变为先焊合区受力再颈部受力,这是超声焊复合强化的根本原因;超声焊可使铝合金无铆接头内部形成一定深度的固相焊,使铝合金接头力学性能得到大幅提升;TA1钛合金无铆接头内部固相焊较浅,力学性能提升相对较低。  相似文献   

16.
The aim of the present study was to investigate the effect of ultrasonic treatment (25 kHz) on biosurfactant production by Lactobacillus plantarum ATCC 8014. The impacts of the ultrasonication (with a frequency of 25 kHz and power of 7.4 W for 30 min time duration) were examined at different stages of the fermentation process to obtain the optimum stimulation instant(s). The optimum scenario was found to be one-time sonication at the 12th hour of fermentation which can be beneficial from an economic point of view (compared with multiple applications of sonication). Ultrasonic treatment at this time resulted in enhancement of the productivities of biomass (4.5 g/L) and biosurfactant (2.01 g/L) which was almost 1.3 times higher than those of the non-sonicated control samples. According to our results, it was clearly observed that glucose consumption increased after ultrasonic treatment representing the improved substrate uptake and progression of the cellular metabolism. Furthermore, the transmission electron microscopic images immediately after sonication clarified the pore formation on the cell surfaces. The results also indicated the enhancement of plasma membrane permeability of the sonicated cells. Fourier transform infrared spectroscopy and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy analyses also disclosed respectively no structural differences before and after ultrasonic exposure in the produced biosurfactant and bacterial cell membrane. The biosurfactant was characterized to be a mixture of carbohydrate (28%), protein (23%) and lipid (specified by gas chromatography-mass spectrometry) known as glycolipoprotein. The sustainable critical micelle concentration and the stability of the synthesized biosurfactant can feature its potential applicability in various processes in the food and pharmaceutical industries.  相似文献   

17.
A pulsed Nd:YAG laser with an approximately Gaussian beam shape is directed onto the surface of an aluminium sheet at an energy density below which damage by laser ablation occurs, generating Lamb waves in the sheet. The laser beam is raster scanned across the surface of the sample. The Lamb waves travel radially outwards from the generation point and are detected some distance away by an electromagnetic acoustic transducer with sensitivity to in-plane displacements of the sheet. A number of static EMATs are located around the edges of the sheet, some distance from the generation point. The presence of a crack-like defect on the sheet can be detected by either a sudden change in the ultrasonic waveform or by an enhancement in the frequency content of the waveform when the laser beam illuminates directly onto the crack.  相似文献   

18.
We propose a full-field pulse-echo laser ultrasonic wave propagation imager (FF-PE-UPI) for the evaluation of structural defects. The FF-PE-UPI consists of a Q-switched laser for the generation of thermoelastic waves, a laser Doppler vibrometer (LDV) for sensing, and a two-axis translation stage for raster scanning of the combined generation and sensing laser beams. A-scan, B-scan, and C-scan data representations are used for the evaluation of structural defects. Three specimens were tested: a 4-mm aluminum plate with an area of 50% thickness reduction, a 6-mm aluminum plate with an area of 25% thickness reduction, and an 8-mm aluminum plate with engraved letters. The damages on the tested specimens were successfully visualized.  相似文献   

19.
Silva MZ  Gouyon R  Lepoutre F 《Ultrasonics》2003,41(4):301-305
Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.  相似文献   

20.
理论研究了影响Sagnac干涉法信噪比提升能力和效率的各项因素。通过控制脉冲的空间分布和衰减片透过率,能够有效提高Sagnac干涉法的效率。Sagnac干涉法提升信噪比的能力与入射脉冲的信噪比有关:入射脉冲信噪比越高,信噪比提升的量级就越大。在SILEX-Ⅰ超短超强脉冲激光装置上建立了实验平台。3 TW压缩器输出的超短超强脉冲光经衰减片进入Sagnac干涉仪,非线性介质为5 cm长的熔石英材料,衰减片透过率为55%。当入射脉冲能量为6.6 mJ时,利用三阶自相关仪测量得到脉冲的信噪比从使用Sagna干涉仪前的10-6提高到了10-7,此时出射脉冲的能量为1.6 mJ,效率为24%。该方法对光束口径没有限制,能够用于大能量条件下短脉冲信噪比的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号