首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of shear on non-isothermal crystallization of commercial poly(butylene adipate-co-terephthalate) (PBAT) was investigated. PBAT melt was sheared at 130 and 150 °C at rates of 10–100/s, and then cooled. The crystallization was followed by a light depolarization technique, whereas the crystallized specimens were analyzed by DSC, 2D-SAXS, 2D-WAXS, PLM and SALS. Shear flow shifted crystallization to higher temperature, and the effect was augmented by lower temperature of shearing as well as by higher shear rate and strain. Crystallization peak rate temperature of PBAT, sheared at 130 °C for 5 min at 100/s, increased by up to 12 °C. However, no evidence of crystal orientation due to shear was found, indicating that the shear induced the point-like nucleation. Only a small increase of melting peak temperatures, by up to 2–5 °C, was observed for the specimens sheared at the highest rates (≥50/s).  相似文献   

2.
Shear-induced isothermal crystallization in iPP based nanocomposites with organo-modified montmorillonite was followed by light depolarization technique. Prior to the crystallization, samples were sheared at 1 or 2 s−1 for 10 s in a plate-plate system at crystallization temperature of 136 °C. Structure of the solidified specimens was investigated by light microscopy and electron microscopy, X-ray techniques and IR spectroscopy. Strong enhancement of the nucleation and crystallization after shearing was observed in the compatibilized nanocomposites with the clay. Clay exfoliation was found to accelerate strongly the shear-induced nucleation and overall crystallization. However, the sheared samples exhibited only weak orientation of α crystals with (0 4 0) crystallographic planes parallel to shearing direction that resulted probably from a small population of oriented crystals that formed due to shear-induced orientation of iPP chains and served as nuclei for further nearly isotropic growth.  相似文献   

3.
马桂秋 《高分子科学》2015,33(11):1538-1549
The compatibility between isotactic polypropylene(i PP) and ethylene-propylene-diene terpolymer(EPDM) in the blends was studied. SAXS analysis indicates that i PP and EPDM phases in the binary blend are incompatible. Isothermal crystallization behaviors of i PP in phase-separated i PP/EPDM were studied by in situ POM equipped with a Linkam shear hot stage. It was found that typical spherulites of i PP were formed both in neat i PP and in i PP/EPDM blends. The radial growth rate(d R/dt) of spherulites of i PP in the blend was not influenced by EPDM phases. Further investigations on isothermal crystallization of i PP in i PP/EPDM after shear with a fixed shear time showed that the crystallization rate of i PP in the blends increased with increasing shear rates, whereas, the crystallization rate was much lower than that of neat i PP. WAXD results showed that ?-crystal i PP was formed in neat i PP as well as in i PP/EPDM blends after shearing and the percentage of ?-crystal bore a relationship to the applied shear rate. The presence of EPDM resulted in lower percentage of ?-crystal in the blends than that in neat i PP under the same constant shear conditions. SAXS experiments revealed that shear flow could induce formation of oriented lamellae in i PP and i PP in the blends, and the presence of EPDM led to a reduced fraction of oriented lamellae.  相似文献   

4.
The effects of chain extension and melt blending temperature on the stereocomplex formation of 50/50 (w/w) poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA) blends or stereocomplex polylactides (scPLAs) were investigated. Joncryl® ADR 4368, a styrene-acrylic multifunctional oligomeric agent, was used as a chain extender. Differential scanning calorimetry and X-ray diffractometry were used to confirm the stereocomplex formation of the PLLA/PDLA blends. Melt flow indices (MFI) of the blends were also determined. The stereocomplex crystallinities gradually decreased with increasing blending temperature and Joncryl® ADR 4368 ratio. The significant decrease in the MFI of scPLAs is believed to be attributed to chain extension at the blending temperatures of 170 °C and 200 °C. The MFI values of scPLAs decreased as the Joncryl® ADR 4368 ratio and blending temperature increased. The results indicated that the chain extension has an effect on the stereocomplexation and it improved the melt strength of the scPLAs.  相似文献   

5.
The crystallization behavior of polyetheretherketone (PEEK), polyoxymethylene (POM), polyethyleneterephtalate (PET), and polypropylene (PP) under nonisothermal conditions has been studied. Differential scanning calorimetry was used to monitor crystallization from the melt and a kinetic model has been proposed to describe three-dimensional spherulitic crystal growth. The model, which accounts for crystalline growth rate, uses two modified Avrami equations to represent both heterogeneous and homogeneous nucleation and growth processes. The model parameters are all associated with physical constants. The predicted evolution of absolute crystallinity showed good agreement with experimentally obtained values for a wide range of cooling rates. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35 : 875–888, 1997  相似文献   

6.
The crystallization kinetics of polypropylene was observed during shear and after shear experiments under isothermal condition. The crystallizations were performed in a plate-plate and a fiber pull-out device. The nucleation density, the crystalline growth and the overall kinetics were measured and compared with data obtained in a similar way but during static experiments. The morphologies are spherulitic and formed from nuclei which seem to be randomly distributed. -phase spherulites are always observed but with a nucleation density and a growth rate which depend on shearrate. The nucleation density is strongly enhanced by shear and acts as the main factor on the overall kinetics. The overall kinetics can be analyzed with a two-step Avrami model, where an Avrami exponentn 1 with a very high value is always observed first after shear and a more usual parametern 2 for the subsequent crystallization period. This high value ofn 1 seems to be related to the strong enhancement of nucleation density. The growth rate increases with the shear-rate, but the basic growth mechanisms do not seem to be modified. For crystallizations after shear the growth rate decreases with a long-time delay after shear but not down to the static value. The effect is characteristic of a partial relaxation of chain orientation after shear but with a very unusual time constant.  相似文献   

7.
Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.  相似文献   

8.
The crystallization behavior of nylon 1212, irradiated at 60Co γ‐rays (50 kGy), was studied by a rheometer, polarized optical microscopy (POM), and differential scanning calorimeter (DSC). The results showed that irradiated nylon 1212 samples exhibited abnormal crystallization behavior during the crystallization process: The Avrami exponent n was calculated and was found to be in the range from 2.06–2.41 for isothermal crystallization, and from 2.67–4.91 for nonisothermal crystallization; the spherulite morphology also changed largely by polarized optical microscopy (POM); the crystallization activation energy ΔE for isothermal and nonisothermal crystallization process of irradiated nylon 1212 are determined to be 57.4 kJ/mol and 78.65 kJ/mol, respectively, which are lower than that of nonirradiated nylon 1212. At the same time, a new method by a combination of the Avrami and Ozawa equations was successfully applied to analyze the noncrystallization process of irradiated nylon 1212. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2326–2333, 2005  相似文献   

9.
The crystallization kinetics of the high‐flow nylon 6 containing polyamidoamine (PAMAM) dendrimers units in nylon 6 matrix was investigated by differential scanning calorimetry. The Ozawa and Mo equations were used to describe the crystallization kinetics under nonisothermal condition. The values of Avrami exponent m and the cooling crystallization function F(T) were determined from the Ozawa plots, which showed bad linearity, and were divided into three sections depending on different cooling rates. The plots of the m and log F(T) values versus crystallization temperatures were obtained, which indicated that the actual crystallization mechanisms might change with the crystallization temperatures. The high‐flow nylon 6 has higher values of m and log F(T) than those of pure nylon 6, which implied that the high‐flow nylon 6 had more complicated crystallization mechanisms and slower crystallization rate than those of pure nylon 6. The good linearity of the Mo plots verified the success of this combined approach. The activation energies of the high‐flow nylon 6 ranged from 157 to 174 kJ/mol, which were determined by the Kissinger method. The ΔE values were lower than those of pure nylon 6, and the ΔE values were affected by both the generation and the content of PAMAM units in the nylon 6 matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2201–2211, 2008  相似文献   

10.
Attapulgite (AT)‐reinforced poly(vinyl alcohol) (PVA) nanocomposite films were prepared by solution‐casting technique. The nonisothermal crystallization behaviors of PVA bulk and PVA/AT nanocomposites have been investigated by differential scanning calorimetry (DSC). It has been found that the uniformly dispersed AT nanorods in the matrix have great influence on the glass transition temperature and crystallization behavior of PVA matrix. The Jeziorny method has been employed to analyze the DSC data. The results show that Jeziorny method could describe this system very well. Comparing with the PVA bulk, PVA/AT nanocomposites have higher crystallinity Xt, shorter semicrystallization time t1/2, and higher crystallization rate constant Zc. It can be concluded that AT can be used as an effective nucleating agent and has effects on the growth of crystallites in the crystallization process of PVA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 534–540, 2006  相似文献   

11.
以1,4-丁二醇为引发剂、辛酸亚锡为催化剂,通过L-丙交酯(LLA)、乙交酯(GA)、ε-己内酯(CL)的开环共聚,制得了低分子量的端羟基结晶性LLA/GA共聚物(PLLGA)和CL/GA共聚物(PCG),分别以FTIR1、H-NMR、GPC、DSC对其微结构和热转变温度进行了表征,重点考察了其热转变温度的组成、分子量依赖性.结果表明,利用辛酸亚锡/二元醇引发开环聚合,通过改变单体配比和单体/引发剂配比,可方便地调控共聚物的组成和分子量;通过改变共聚物的组成和分子量,可在较宽的范围内调节共聚物的热转变温度,并得到了玻璃化温度和熔点与组成、分子量之间定量的经验关系式.  相似文献   

12.
In diblock copolymers, the constraining effects of different stereochemical structure of high-Tm block on crystallization and melting behaviors of other constituent are supposed to be different. In this work, PEG-b-PDLLA and PEG-b-PLLA were synthesized, and crystallization kinetics, crystalline structure, melting behaviors of PEG blocks and morphology development in these systems were evaluated. Compared to those connected to PLLA, PEG-b-PDLLA exhibited lower crystallization rates, implying that connectivity of amorphous chain exerted more pronounced effect on crystallization rate of PEG than that of steric hindrance of PLLA crystallites. While all PEG-b-PDLLA samples showed a single endothermic peak during heating process, multiple melting peaks were observed in PEG-b-PLLA associated with composition, crystallization temperature and cooling rate of PLLA. A lamellar structure was formed by the crystallization of PEG in all PEG-b-PDLLA, however, when PEG-b-PLLA crystallized at room temperature directly, unexpected results occurred: lamellar for diblock copolymers with 31.5 and 48.0 wt% PLA or cylindrical structure for the diblock copolymers with 56.1 and 63.8 wt% PLA. Depending on composition, PEG-b-PLLA created one or two types of lamellar stacks after sequential crystallization of PLLA and PEG. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 455–465  相似文献   

13.
Polyamide 6 (PA6)/montmorillonite (MMT) nanocomposites were prepared via melt intercalation. The structure, mechanical properties, and nonisothermal crystallization kinetics of PA6/MMT nanocomposites were investigated by X‐ray diffraction (XRD), tensile and impact tests, and differential scanning calorimetry (DSC). Before melt compounding, MMT was treated with an organic surfactant agent. XRD traces showed that PA6 crystallizes exclusively in γ‐crystalline structure within the nanocomposites. Tensile measurements showed that the MMT additions are beneficial in improving the strength and the stiffness of PA6, at the expense of tensile ductility. Impact tests revealed that the impact strength of PA6/MMT nanocomposites tended to decrease with increasing MMT content. The nonisothermal crystallization DSC data were analyzed by Avrami, Ozawa, modified Avrami‐Ozawa, and Nedkov methods. The validity of these empirical equations on the nonisothermal crystallization process of PA6/MMT nanocomposites is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2878–2891, 2004  相似文献   

14.
聚乳酸合成的最新进展   总被引:14,自引:0,他引:14  
聚乳酸是近年来广泛应用,生物相容性良好的生物材料。本文综述了聚乳酸在合成方面研究的最新进展,对未来的工作进行了展望。  相似文献   

15.
A nucleation rate function is proposed for use in analyzing the overall crystallization kinetics of polymers. This function allows for the possibility that the nucleation rate varies substantially during the crystallization. This feature is particularly useful in analyzing nonisothermal crystallization, but it can be used to analyze isothermal crystallization as well. The nucleation rate function was used in the derivation of a modified transformation kinetics equation of the Avrami type. The modified Avrami equation was found to be suitable for kinetics analysis for the data obtained from nonisothermal crystallization at rapid cooling rates. Kinetics parameters used to describe nonisothermal crystallization under rapid cooling rates are presented and discussed. These include crystallization induction time, plateau (crystallization) temperature, crystallization half-time, crystallization rate constant, Avrami index, and newly defined quantities called nucleation index, geometric index, and nucleation rate constant. The procedure used to obtain the nucleation rate constant and nucleation index for the nucleation rate function is described and illustrated by application to the analysis of the crystallization kinetics of polypropylene. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1077–1093, 1997  相似文献   

16.
The injection moulding of semi-crystalline thermoplastic polymers requires an exact knowledge of the thermodynamic data and of the crystallization kinetics. The behaviour of the polymer melt during rapid cooling in the mould determines, to a great extent, the quality and usability of a final product. Technical raw materials are often equipped with nucleating agents in order to obtain crystallization within the desired temperature range and at the required rate. The use of recycled material (regranulate) shows an analogous effect such as the addition of nucleating agents, i.e. crystallization begins at a higher temperature and a higher crystallization rate is detected compared to materials without added regranulate. Heat flux DSC was used to study the crystallization of polyamides, polyolefins and polyoxymethylene during cooling at various cooling rates. Although the temperature gradients and pressures which occur in the proceesing machine cannot be realised in DSC tests, the DSC results reproduce the direction of influence of the regranulate additive very clearly.  相似文献   

17.
Non-isothermal crystallization behavior and melting characteristics of polypropylene (PP) in EPDM/PP and EOC/PP TPVs were studied at various cooling rates using differential scanning calorimetry (DSC). The results revealed that the crystallization of PP in the TPVs occurs at a lower degree of undercooling, relative to neat PP, with smaller size PP crystals. The vulcanized EPDM and EOC particles could accelerate the crystallization of the PP phase either by providing nucleation or by promoting interfacial crystallization. The crystallization exotherm and melting endotherm peaks of the TPVs were broad, and they shifted towards lower temperatures as the cooling rate was increased. The analysis of non-isothermal crystallization kinetics indicates that the crystallization of the PP in the TPVs is heterogeneous nucleation, with two or three-dimensional growth during primary and secondary crystallization. Furthermore, the vulcanized EPDM and EOC particles promote the initial crystallization activation energy of the PP in TPVs to exceed that of the neat PP. The developed mathematical models show an approximately power-law dependence on the cooling rate for the crystallization behavior and the melting characteristics of PP in the TPVs.  相似文献   

18.
The cooling function (κ) in Ozawa model was investigated through theoretic analysis and experimental method. Different from the fact accepted by researchers over past decades that κ(T) depends only on the crystallization temperature (T) and consequently the parameters for nonisothermal crystallization kinetics could be obtained by plotting ln[? ln(1 ? X(T))] versus ln λ at a given T, we found that κ at a given T was also dependent on onset temperature (T0) of crystallization process. Because T0 varies with cooling rate (λ) in nonisothermal crystallization, we conclude that κ is a binary function of T and λ, which was validated by our kinetic data from differential scanning calorimetry measurement in a wide λ range from 1 to 80 °C/min. It is suggested that the conventional method for calculating kinetic parameters based on Ozawa model, by plotting ln[? ln(1 ? X(T))] versus ln λ, might not be exact for nonisothermal crystallization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44:795–800, 2006  相似文献   

19.
The cold crystallization at temperature Tcc (melting > Tcc > glass transition) and the postmelting crystallization of polylactic acid plasticized by compressed carbon dioxide (CO2) were studied using a high-pressure differential scanning calorimeter. The kinetics of the two kinds of crystallization were evaluated by the Avrami equation as a function of pressure at certain temperatures. The effects of using talc as a nucleation agent on the two types of crystallization under pressure were also investigated. The results show that compressed CO2 increased the mobility of the polymer chains in solid state, resulting in an increased rate of cold crystallization. The decreased rate of postmelting crystallization was mainly in the nucleation-controlled region, which indicates that the number of nuclei was decreased by the compressed CO2. The growth rate of the two crystallization types followed the Avrami equation, but the kinetics of each depended upon temperature and pressure. The inclusion of talc accelerated postmelting crystallization but had little effect on cold crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2630–2636, 2008  相似文献   

20.
We evaluated the relationship between the ionic substituents and nonisothermal crystallization behavior in poly(butylene succinate) (PBS) ionomers, synthesized by the introduction of sulfonated dimethyl fumarate (SDMF) with sodium sulfonate. In addition, we investigated the effect of sodium ions on the molecular structure of the PBS backbone by solid‐state 23Na NMR analysis. Sodium ion aggregates (multiplets) was predominately created with the ionic group concentration, and melt rheology and dynamic melt analysis results showed that multiplet formation induced not only remarkable heterogeneity, but also a high degree of clustering in the PBS chains. At low ionic group concentration, well dispersed multiplets behaved as effective nuclei during the crystallization of the PBS ionomer and accelerated the rate of crystallization. As ionic group concentration grew higher, crystallization rates decreased due to hindered chain mobility by clusters consisting of numerous multiplets. A combined Ozawa and Avrami equation proved to be more effective than the Ozawa equation in describing the nonisothermal crystallization kinetics of PBS and its ionomers. The observed nucleation activity indicates that the nonisothermal crystallization rate is not directly proportional to the ionic group concentration. Superior nucleation activity was observed in PBS ionomer containing 1 mol % SDMF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 925–937, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号