首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A high-resolution, flood-illumination retinal camera using liquid crystal (LC) adaptive optics (AO) is presented. The retinal camera uses light at 780 nm for ocular aberration measurement while light at 655 nm and 593 nm for retinal imaging. In order to avoid chromatic aberrations due to wavelength dependence of LC, we adopt an open-loop technique, in which dynamic correction of aberrations is applied only to the imaging light. A compensation pattern projected on the LC wavefront corrector is adjusted to provide phase wrapping of 2 π for illumination light. We confirmed feasibility of this technique by performing in vivo retinal imaging experiments. Photoreceptors were clearly revealed at both imaging light at 655 nm and 593 nm. Feasibility of the technique was also supported by comparison of the retinal images taken by the present open-loop technique with those taken by the conventional closed-loop one and by analysis of the spatial distribution of the photoreceptors.  相似文献   

2.
The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.  相似文献   

3.
Finger vein biometric systems become increasingly more popular because they offer higher security comparing to other authentication solutions with respect to positive persons experience. Those systems operate on near infrared light (NIR) in wavelength range from around 700 to 1000 nm, however dedicated research to determine impact of NIR lighting on biometric system effectiveness has not been conducted and presented in the literature ever before. In this paper the study of correlation between wavelengths in NIR spectra and effectiveness of person identification in a biometric system is presented. To achieve that goal, a new model of image acquisition system allowing change of light wavelengths has been created and NIR finger vein dataset containing 11 556 images was established. Furthermore, this model was used to perform experimental work and proof that some NIR wavelengths better suit for vein patterns acquisition, allowing to increase the recognition effectiveness of finger vein biometric systems.  相似文献   

4.
Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.  相似文献   

5.
Self-organized nanoripples are induced on bulk metal Cu and Ag by femtosecond laser, and the influence of number of shots on nanostructure formation has been investigated. The AFM images show that obtained grooves on Cu are about 50 nm deep, and have an average spacing of 481.41 nm, which is smaller compared to the incident radiation wavelength (800 nm). Arrays of ablated craters are machined on Cu and Ag surfaces by femtosecond laser in order to determine the optical characteristics of laser irradiated surface. Compared with that of untreated sample, the locations of maximum absorption wavelength of laser treated samples are not shifted, while average absorbance intensities are enhanced both for modified Ag and Cu surfaces. Finally, the effects of thermal conductivity, dielectric function as well as electron–phonon coupling coefficient on nanograting morphology induced by femtosecond laser are discussed qualitatively.  相似文献   

6.
Experimental parameters used in the annular bright field (ABF) imaging method were tested using images simulated with the multislice method. Images simulated under identical conditions were found to agree well with experimental images. The ABF technique was shown to be relatively insensitive to the sample thickness and the defocus. In experimental ABF images, atomic columns exhibited dark contrast over a wide range of specimen thickness and defocus values, from 10 to 70 nm and ?20 to +20 nm, respectively. A series of diffraction patterns at atomic columns, obtained using the diffraction imaging method, exhibited higher intensities in their central regions (0–11 mrad) for light elements and in their peripheral regions (11–22 mrad) for heavy elements. The results indicated that the contrast of light elements is enhanced by subtraction of the central region of the transmitted beam, since this is blocked by a circular mask in the ABF-STEM technique. Thus, the overall contrast of light elements is greatly improved, allowing them to be clearly visualized.  相似文献   

7.
Accurate advance detection of the sinkholes that are occurring more frequently now is an important way of preventing human fatalities and property damage. Unlike naturally occurring sinkholes, human-induced ones in urban areas are typically due to groundwater disturbances and leaks of water and sewage caused by large-scale construction. Although many sinkhole detection methods have been developed, it is still difficult to predict sinkholes that occur in depth areas. In addition, conventional methods are inappropriate for scanning a large area because of their high cost. Therefore, this paper uses a drone combined with a thermal far-infrared (FIR) camera to detect potential sinkholes over a large area based on computer vision and pattern classification techniques.To make a standard dataset, we dug eight holes of depths 0.5–2 m in increments of 0.5 m and with a maximum width of 1 m. We filmed these using the drone-based FIR camera at a height of 50 m. We first detect candidate regions by analysing cold spots in the thermal images based on the fact that a sinkhole typically has a lower thermal energy than its background. Then, these regions are classified into sinkhole and non-sinkhole classes using a pattern classifier. In this study, we ensemble the classification results based on a light convolutional neural network (CNN) and those based on a Boosted Random Forest (BRF) with handcrafted features. We apply the proposed ensemble method successfully to sinkhole data for various sizes and depths in different environments, and prove that the CNN ensemble and the BRF one with handcrafted features are better at detecting sinkholes than other classifiers or standalone CNN.  相似文献   

8.
The SOI based waveguide devices are found to be highly polarization sensitive. Unwanted polarization excitations can be attenuated by integrating a TE- or TM-pass polarizer. A large attenuation of TM-polarized light has been observed when a thin film of metal is coated on the top of silicon rib waveguide, while TE-polarized light remains almost unaffected. The attenuation of TM-polarized light is attributed to the plasmonic absorption of the evanescent field in the metal cladding. Typically, with an Al cladding of thickness ~ 100 nm and a length of 1 mm on top of a single-mode (λ  1550 nm) SOI rib waveguide structure, TE vs TM extinction ratio of ~ 15 dB has been obtained. Integrating such waveguide polarizers in a directional coupler and MZI based DWDM channel interleaver, we have also achieved an improvement in polarization extinction by ~ 15 dB.  相似文献   

9.
The Bi–Tm–Er co-doped SiO2–Al2O3–La2O3 (SAL) glasses, which exhibited a broadband near-infrared (NIR) emission, were investigated by the optical absorption and photoluminescence spectra. A super broadband NIR emission extending from 0.95 to 1.6 μm with a full-width at half-maximum (FWHM) of 430 nm which covered the whole O, E, S, C and L bands, was observed in Bi–Tm–Er co-doped samples under 808 nm excitation, as a result of the overlap of the Bi-related emission band (centered at 1270 nm) and the emission from Tm3+ 3H43F4 transition (1450 nm) as well as Er3+ 4I13/24I15/2 transition (1545 nm). In addition, a super broadband emission with amplitude relatively flat from 0.95 to 2.1 μm has been observed. The possible energy transfer between Bi-related centers, Tm3+ ions and Er3+ ions was proposed.  相似文献   

10.
Vanadium dioxide has excellent phase transition characteristic. Before or after phase transition, its optical, electrical, magnetic characteristic hangs hugely. It has a wide application prospect in many areas. Now, the light which can make vanadium dioxide come to pass photoinduced phase transition range from soft X-ray to medium infrared light (6.9 μm, 180 meV). However, whether 10.6 μm (117 meV) long wave infrared light can make vanadium dioxide generate photoinduced phase transition has been not studied. In this paper, we researched the response characteristic of vanadium dioxide excited by 10.6 μm infrared light. We prepared the vanadium dioxide and test the changes of vanadium dioxide thin film’s transmittance to 632.8 nm infrared light when the thin film is irradiate by CO2 laser. We also test the resistivity of vanadium dioxide. Excluding the effect of thermal induced phase transition, we find that the transmittance of vanadium dioxide thin film to 632.8 nm light and resistivity both changes when irradiating by 10.6 μm laser. This indicates that 10.6 μm infrared light can make the vanadium dioxide come to pass photoinduced phase transition. The finding makes vanadium has a potential application in recording the long-wave infrared hologram and making infrared detector with high resolution.  相似文献   

11.
A sub-diffraction limit fluorescence localization microscope was constructed using a standard cooled 1.4 mega-pixel fluorescence charge-coupled device (CCD) camera to simultaneously resolve closely adjacent paired quantum dots on a flat surface with emissions of 540 and 630 nm. The images of the overlapping Airy discs were analyzed to determine the center of the point spread function after noise reduction using Fourier transformation analysis. The Cartesian coordinates of the centers of the point spread functions were compared in serial images. Histograms constructed from serial images fit well to Gaussian functions for resolving two quantum dots separated by as little as 10 nm in the xy coordinates. Statistical analysis of multiple pairs validated discrimination of inter-fluorophore distances that vary by 10 nm. The method is simple and developed for xy resolution of dilute fluorophores on a flat surface, not serial z sectioning.  相似文献   

12.
A compact, low cost, high speed, non-destructive testing NIR (near infrared) spectrometer optical system based on MOEMS grating device is developed. The MOEMS grating works as the prismatic element and wavelength scanning element in our optical system. The MOEMS grating enables the design of compact grating spectrometers capable of acquiring full spectra using a single detector element. This MOEMS grating is driven by electromagnetic force and integrated with angle sensor which used to monitored deflection angle while the grating working. Comparing with the traditional spectral system, there is a new structure with a single detector and worked at high frequency. With the characteristics of MOEMS grating, the structure of the spectrometer system is proposed. After calculating the parameters of the optical path, ZEMAX optical software is used to simulate the system. According the ZEMAX output file of the 3D model, the prototype is designed by SolidWorks rapidly, fabricated. Designed for a wavelength range between 800 nm and 1500 nm, the spectrometer optical system features a spectral resolution of 16 nm with the volume of 97 mm × 81.7 mm × 81 mm. For the purpose of reduce modulated effect of sinusoidal rotation, spectral intensity of the different wavelength should be compensated by software method in the further. The system satisfies the demand of NIR micro-spectrometer with a single detector.  相似文献   

13.
The Yb-doped Bi2O3–GeO2 glasses were prepared by the conventional melt quenching technique. Near-infrared (NIR) broadband emission was found at about 1024 nm, and 1330 nm (under 785 nm excitation), and the measured fluorescent lifetime was about several hundred microseconds. The emission intensity of Yb-doped Bi2O3–GeO2 glasses increased with increasing of Yb dopant in our experiments. The NIR emission should be related to Yb3+ and lower valence Bi ions.  相似文献   

14.
Spectral-kinetics properties of photo-scintillation excited with single light pulses of a nitrogen laser (λ=337.1 nm, t1/2=5 ns, Q=1 mJ) have been studied in CsI:Eu crystals at temperature within 80–300 K. It is found that the exponential decay of 463 nm emission band has a time constant which grows from 0.85 μs at 78 K to 1.6 μs at 380 K. Such an anomalous temperature behavior of 463 nm emission decay kinetics is discussed in terms of the crystal thermal expansion. It has been proposed that 463 nm emission is caused by a cluster center consisting of three dipoles Eu2+vc? bounded with each other in a hexagon. Owing to the exchange resonance in the cluster, the energy passes from an excited dipole to a non-excited one and the distance between them gets longer due to thermal expansion of the crystal.  相似文献   

15.
RGB pixels by microcavity top-emitting organic light-emitting diode (TOLED) is beneficial to both minimizing the loss of light and improving the color purity and the efficiency. Based on the multi-emitting layers, white organic light-emitting diodes (OLEDs) and microcavity TOLEDs were prepared. TOLEDs were fabricated using Ag/ITO as the reflector and adjusting layer, Al/Ag as semi-transparent cathode, Alq:DCJTB/TBADN:TBPe/Alq:C545 as white light emitting layer. By adjusting the thickness of ITO, optical length of cavity and the color of the device have been changed. So we get RGB tricolor devices. The peak wavelengths are 476 nm, 539 nm, 601 nm, Commission Internationale d’Eclairage (CIE) coordinates are (0.133, 0.201), (0.335, 0.567), (0.513, 0.360), FWHM are 32 nm, 50 nm, 73 nm for blue, green and red, respectively.  相似文献   

16.
The authors have produced the polymer micro-fiber with a highly optical conductive efficiency of 83% and 89% for the pump light of 532 nm and 1550 nm, respectively. The authors constructed a Mach–Zehnder Interferometer (MZI) by a micro-manipulation method and measured the different interference spectra by micro-adjusting the path difference of the dual interference arms of MZI under a microscope. Due to the path difference, the coherent length of the corresponding spectrum continuously and slightly decreases from 20 μm, 13.5 μm, 10.6 μm to 8 μm. The relationships between this particular MZI structure and the surrounding temperature, as well as the refractive index changes can be determined via the evanescent field and the thermally induced expansion or contraction effect, which will be reflected in the interference spectrum.  相似文献   

17.
In this paper, we report on a large-mode-area double-clad 980 nm Yb-doped photonic crystal fiber (PCF) amplifier. In the experiment, an output power of 1.21 W at 980 nm with 2.5 nm bandwidth has been yielded when the PCF length was 40 cm. Through frequency doubling the 980 nm amplified laser with a BIBO crystal, an output power of 51 mW at 490 nm has been generated.  相似文献   

18.
Chromotrope 2R (CHR) films of different thicknesses have been prepared using spin coater. The material has been characterized using FT-IR, DTA and X-ray diffraction. The XRD of the material in powder and thin film forms showed polycrystalline structure with triclinic phase. Preferred orientation at the (1 1 4) plane is observed for the deposited films. Initial indexing of the XRD pattern was performed using “Crystalfire” computer program. Miller indices, h k l, values for each diffraction line in X-ray diffraction (XRD) spectrum were calculated and indexed for the first time. The DTA thermograms of CHR powder have been recorded in the temperature range 25–350 °C with different heating rates. The spectra of the infra-red absorption allow characterization of vibration modes for the powder and thin film. The effect of film thickness on the optical properties has been studied in the UV-visible-NIR regions. The films show high transmittance exceeding 0.90 in the NIR region λ > 800 nm. The intensity of the absorption peaks for λ < 800 nm are enhanced as the film thickness increase. The absorption bands are attributed to the (π–π*) and (n–π*) molecular transitions. The optical properties have been analyzed according to the single-oscillator model and the dispersion energy parameters as well as the free charge carrier concentration have been determined. The optical energy gap as well as the oscillator strength and electric dipole strength have been calculated.  相似文献   

19.
The aim of this study was to evaluate the accuracy in the Normal and DFD classification in Nellore beef using a bench-top hyperspectral imaging system. A hyperspectral imaging system (λ = 928–2524 nm) was used to collect hyperspectral images of the Longissimus thoracis et lumborum (n = 78) of Nellore cattle. The images were processed, being selected region of interest and extracted spectra image and were selected the wavelengths considered most important for the treats evaluated. Six linear discriminant models were developed to classify beef samples on Normal and DFD. The model using all wavelengths associated with the reflectance and absorbance spectrum transformed with the pretreatment 2nd derivative resulted in an overall accuracy of 93.6% for both pretreatments. In this configuration, the model was able to classify correctly 73 samples from a total of 78 samples. The results demonstrate that the hyperspectral imaging system may be considered a viable technology for beef classification on Normal and DFD.  相似文献   

20.
Thermography for scientific research and practical purposes requires a series of procedures to obtain images that should be standardized; one of the most important is the time required for acclimatization in the controlled environment. Thus, the objective of this study was to identify the appropriate acclimatization time in rest to reach a thermal balance on young people skin. Forty-four subjects participated in the study, 18 men (22.3 ± 3.1 years) and 26 women (21.7 ± 2.5 years). Thermographic images were collected using a thermal imager (Fluke®), totaling 44 images over a period of 20 min. The skin temperature (TSK) was measured at the point of examination which included the 0 min, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20. The body regions of interest (ROI) analyzed included the hands, forearms, arms, thighs, legs, chest and abdomen. We used the Friedman test with post hoc Dunn’s in order to establish the time at rest required to obtain a TSK balance and the Mann–Whitney test was used to compare age, BMI, body fat percentage and temperature variations between men and women, considering always a significance level of p < 0.05. Results showed that women had significantly higher temperature variations than men (p < 0.01) along the time. In men, only the body region of the abdomen obtained a significant variance (p < 0.05) on the analyzed period, both in the anterior and posterior part. In women, the anterior abdomen and thighs, and the posterior part of the hands, forearms and abdomen showed significant differences (p < 0.05). Based on our results, it can be concluded that the time in rest condition required reaching a TSK balance in young men and women is variable, but for whole body analysis it is recommended at least 10 min for both sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号