首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The purpose of this note is to show a new series of examples of homogeneous ideals I in K[x,y,z,w] for which the containment I(3)?I2 fails. These ideals are supported on certain arrangements of lines in P3, which resemble Fermat configurations of points in P2, see [14]. All examples exhibiting the failure of the containment I(3)?I2 constructed so far have been supported on points or cones over configurations of points. Apart from providing new counterexamples, these ideals seem quite interesting on their own.  相似文献   

7.
8.
In this paper we focus our attention on the following nonlinear fractional Schrödinger equation with magnetic field
ε2s(?Δ)A/εsu+V(x)u=f(|u|2)u in RN,
where ε>0 is a parameter, s(0,1), N3, (?Δ)As is the fractional magnetic Laplacian, V:RNR and A:RNRN are continuous potentials and f:RNR is a subcritical nonlinearity. By applying variational methods and Ljusternick–Schnirelmann theory, we prove existence and multiplicity of solutions for ε small.  相似文献   

9.
Let q be a positive integer. Recently, Niu and Liu proved that, if nmax?{q,1198?q}, then the product (13+q3)(23+q3)?(n3+q3) is not a powerful number. In this note, we prove (1) that, for any odd prime power ? and nmax?{q,11?q}, the product (1?+q?)(2?+q?)?(n?+q?) is not a powerful number, and (2) that, for any positive odd integer ?, there exists an integer Nq,? such that, for any positive integer nNq,?, the product (1?+q?)(2?+q?)?(n?+q?) is not a powerful number.  相似文献   

10.
A sharp version of the Balian–Low theorem is proven for the generators of finitely generated shift-invariant spaces. If generators {fk}k=1K?L2(Rd) are translated along a lattice to form a frame or Riesz basis for a shift-invariant space V, and if V has extra invariance by a suitable finer lattice, then one of the generators fk must satisfy Rd|x||fk(x)|2dx=, namely, fk??H1/2(Rd). Similar results are proven for frames of translates that are not Riesz bases without the assumption of extra lattice invariance. The best previously existing results in the literature give a notably weaker conclusion using the Sobolev space Hd/2+?(Rd); our results provide an absolutely sharp improvement with H1/2(Rd). Our results are sharp in the sense that H1/2(Rd) cannot be replaced by Hs(Rd) for any s<1/2.  相似文献   

11.
Let K be the algebraic closure of a finite field Fq of odd characteristic p. For a positive integer m prime to p, let F=K(x,y) be the transcendence degree 1 function field defined by yq+y=xm+x?m. Let t=xm(q?1) and H=K(t). The extension F|H is a non-Galois extension. Let K be the Galois closure of F with respect to H. By Stichtenoth [20], K has genus g(K)=(qm?1)(q?1), p-rank (Hasse–Witt invariant) γ(K)=(q?1)2 and a K-automorphism group of order at least 2q2m(q?1). In this paper we prove that this subgroup is the full K-automorphism group of K; more precisely AutK(K)=Δ?D where Δ is an elementary abelian p-group of order q2 and D has an index 2 cyclic subgroup of order m(q?1). In particular, m|AutK(K)|>g(K)3/2, and if K is ordinary (i.e. g(K)=γ(K)) then |AutK(K)|>g3/2. On the other hand, if G is a solvable subgroup of the K-automorphism group of an ordinary, transcendence degree 1 function field L of genus g(L)2 defined over K, then |AutK(K)|34(g(L)+1)3/2<682g(L)3/2; see [15]. This shows that K hits this bound up to the constant 682.Since AutK(K) has several subgroups, the fixed subfield FN of such a subgroup N may happen to have many automorphisms provided that the normalizer of N in AutK(K) is large enough. This possibility is worked out for subgroups of Δ.  相似文献   

12.
We consider the space-time behavior of the two dimensional Navier–Stokes flow. Introducing some qualitative structure of initial data, we succeed to derive the first order asymptotic expansion of the Navier–Stokes flow without moment condition on initial data in L1(R2)Lσ2(R2). Moreover, we characterize the necessary and sufficient condition for the rapid energy decay 6u(t)62=o(t?1) as t motivated by Miyakawa–Schonbek [21]. By weighted estimated in Hardy spaces, we discuss the possibility of the second order asymptotic expansion of the Navier–Stokes flow assuming the first order moment condition on initial data. Moreover, observing that the Navier–Stokes flow u(t) lies in the Hardy space H1(R2) for t>0, we consider the asymptotic expansions in terms of Hardy-norm. Finally we consider the rapid time decay 6u(t)62=o(t?32) as t with cyclic symmetry introduced by Brandolese [2].  相似文献   

13.
We study LpLr restriction estimates for algebraic varieties in d-dimensional vector spaces over finite fields. Unlike the Euclidean case, if the dimension d is even, then it is conjectured that the L(2d+2)/(d+3)L2 Stein–Tomas restriction result can be improved to the L(2d+4)/(d+4)L2 estimate for both spheres and paraboloids in finite fields. In this paper we show that the conjectured LpL2 restriction estimate holds in the specific case when test functions under consideration are restricted to d-coordinate functions or homogeneous functions of degree zero. To deduce our result, we use the connection between the restriction phenomena for our varieties in d dimensions and those for homogeneous varieties in (d+1) dimensions.  相似文献   

14.
We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction–diffusion equations in Hs(Rn) with s(0,1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs(Rn) and attracts all tempered random subsets of L2(Rn) with respect to the norm of Hs(Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs(Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.  相似文献   

15.
16.
In the present paper we perform the homogenization of the semilinear elliptic problem
{uε0inΩε,?divA(x)Duε=F(x,uε)inΩε,uε=0on?Ωε.
In this problem F(x,s) is a Carathéodory function such that 0F(x,s)h(x)/Γ(s) a.e. xΩ for every s>0, with h in some Lr(Ω) and Γ a C1([0,+[) function such that Γ(0)=0 and Γ(s)>0 for every s>0. On the other hand the open sets Ωε are obtained by removing many small holes from a fixed open set Ω in such a way that a “strange term” μu0 appears in the limit equation in the case where the function F(x,s) depends only on x.We already treated this problem in the case of a “mild singularity”, namely in the case where the function F(x,s) satisfies 0F(x,s)h(x)(1s+1). In this case the solution uε to the problem belongs to H01(Ωε) and its definition is a “natural” and rather usual one.In the general case where F(x,s) exhibits a “strong singularity” at u=0, which is the purpose of the present paper, the solution uε to the problem only belongs to Hloc1(Ωε) but in general does not belong to H01(Ωε) anymore, even if uε vanishes on ?Ωε in some sense. Therefore we introduced a new notion of solution (in the spirit of the solutions defined by transposition) for problems with a strong singularity. This definition allowed us to obtain existence, stability and uniqueness results.In the present paper, using this definition, we perform the homogenization of the above semilinear problem and we prove that in the homogenized problem, the “strange term” μu0 still appears in the left-hand side while the source term F(x,u0) is not modified in the right-hand side.  相似文献   

17.
Under the assumption that VL2([0,π];dx), we derive necessary and sufficient conditions in terms of spectral data for (non-self-adjoint) Schrödinger operators ?d2/dx2+V in L2([0,π];dx) with periodic and antiperiodic boundary conditions to possess a Riesz basis of root vectors (i.e., eigenvectors and generalized eigenvectors spanning the range of the Riesz projection associated with the corresponding periodic and antiperiodic eigenvalues).We also discuss the case of a Schauder basis for periodic and antiperiodic Schrödinger operators ?d2/dx2+V in Lp([0,π];dx), p(1,).  相似文献   

18.
19.
In this paper we consider the inviscid SQG equation on the Sobolev spaces Hs(R2), s>2. Using a geometric approach we show that for any T>0 the corresponding solution map, θ(0)?θ(T), is nowhere locally uniformly continuous.  相似文献   

20.
We compare the isoperimetric profiles of S2×R3 and of S3×R2 with that of a round 5-sphere (of appropriate radius). Then we use this comparison to obtain lower bounds for the Yamabe constants of S2×R3 and S3×R2. Explicitly we show that Y(S3×R2,[g03+dx2])>(3/4)Y(S5) and Y(S2×R3,[g02+dx2])>0.63Y(S5). We also obtain explicit lower bounds in higher dimensions and for products of Euclidean space with a closed manifold of positive Ricci curvature. The techniques are a more general version of those used by the same authors in Petean and Ruiz (2011) [15] and the results are a complement to the work developed by B. Ammann, M. Dahl and E. Humbert to obtain explicit gap theorems for the Yamabe invariants in low dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号