首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pickering emulsions (PEs), emulsions stabilized by solid particles, have shown to be a versatile tool for biphasic catalysis. Here, we report a droplet microfluidic approach for flow PE (FPE) catalysis, further expanding the possibilities for PE catalysis beyond standard batch PE reactions. This microreactor allowed for the inline analysis of the catalytic process with in situ Raman spectroscopy, as demonstrated for the acid-catalyzed deacetalization of benzaldehyde dimethyl acetal to form benzaldehyde. Furthermore, the use of the FPE system showed a nine fold improvement in yield compared to the simple biphasic flow system (FBS), highlighting the advantage of emulsification. Finally, FPE allowed an antagonistic set of reactions, the deacetalization–Knoevenagel condensation, which proved less efficient in FBS due to rapid acid-base quenching. The droplet microfluidic system thus offers a versatile new extension of PE catalysis.  相似文献   

2.
Combining the molecular wire effect with a biphasic sensing approach (analyte in water, sensor‐dye in 2‐methyltetrahydrofuran) and a microfluidic flow setup leads to the construction of a mercury‐sensitive module. We so instantaneously detect Hg2+ ions in water at a 500 μM concentration. The sensor, conjugated non‐water soluble polymer 1 (XFPF), merely supports dibutylaniline substituents as binding units. Yet, selective and sensitive detection of Hg2+‐ions is achieved in water. The enhancement in sensory response, when comparing the reference compound 2 to that of 1 in a biphasic system in a microfluidic chip is >103. By manipulation of the structure of 1 , further powerful sensor systems should be easily achieved.  相似文献   

3.
本文用负压进样的方法, 在自制的玻璃微流控芯片中进行了对甲氧基苯甲醛和盐酸羟胺合成对甲氧基苯甲醛肟的相转移反应. 测定了不同反应时间的产率, 并与常规方法进行了比较. 讨论了相接触面积和塞流对产率的影响.  相似文献   

4.
A microfluidic device that incorporates continuous perfusion and an on-line electrophoresis immunoassay was developed, characterized, and applied to monitoring insulin secretion from single islets of Langerhans. In the device, a cell chamber was perfused with cell culture media or a balanced salt solution at 0.6 to 1.5 microL min(-1). The flow was driven by gas pressure applied off-chip. Perfusate was continuously sampled at 2 nL min(-1) by electroosmosis through a separate channel on the chip. The perfusate was mixed on-line with fluorescein isothiocyanate-labeled insulin (FITC-insulin) and monoclonal anti-insulin antibody and allowed to react for 60 s as the mixture traveled down a 4 cm long reaction channel. The cell chamber and reaction channel were maintained at 37 degrees C. The reaction mixture was injected onto a 1.5 cm separation channel as rapidly as every 6 s, and the free FITC-insulin and the FITC-insulin-antibody complex were separated under an electric field of 500 to 600 V cm(-1). The immunoassay had a detection limit of 0.8 nM and a relative standard deviation of 6% during 2 h of continuous operation with standard solutions. Individual islets were monitored for up to 1 h while perfusing with different concentrations of glucose. The immunoassay allowed quantitative monitoring of classical biphasic and oscillatory insulin secretion with 6 s sampling frequency following step changes in glucose from 3 to 11 mM. The 2.5 cm x 7.6 cm microfluidic system allowed for monitoring islets in a highly automated fashion. The technique should be amenable to studies involving other tissues or cells that release chemicals.  相似文献   

5.
We describe a microfluidic approach for allele-specific extension of fluorescently labeled nucleotides for scoring of single-nucleotide polymorphism (SNP). The method takes advantage of the fact that the reaction kinetics differs between matched and mismatched configurations of allele-specific primers hybridized to DNA template. A microfluidic flow-through device for biochemical reactions on beads was used to take advantage of the reaction kinetics to increase the sequence specificity of the DNA polymerase, discriminating mismatched configurations from matched. The volume of the reaction chamber was 12.5 nL. All three possible variants of an SNP site at codon 72 of the p53 gene were scored using our approach. This work demonstrates the possibility of scoring SNP by allele-specific extension of fluorescently labeled nucleotides in a microfluidic flow-through device. The sensitive detection system and easy microfabrication of the microfluidic device enable further miniaturization and production of an array format of microfluidic devices for high-throughput SNP analysis.  相似文献   

6.
Yuen PK 《Lab on a chip》2008,8(8):1374-1378
In this Technical Note, for the first time, a truly "plug-n-play" modular microfluidic system (SmartBuild Plug-n-Play Modular Microfluidic System) is presented for designing and building integrated modular microfluidic systems for biological and chemical applications. The modular microfluidic system can be built by connecting multiple microfluidic components together to form a larger integrated system. The SmartBuild System comprises of a motherboard with interconnect channels/grooves, fitting components, microchannel inserts with different configurations and microchips/modules with different functionalities. Also, heaters, micropumps and valving systems can be designed and used in the system. Examples of an integrated mixing system and reaction systems are presented here to demonstrate the versatility of the SmartBuild System.  相似文献   

7.
Wang W  Huang Y  Liu J  Xie Y  Zhao R  Xiong S  Liu G  Chen Y  Ma H 《Lab on a chip》2011,11(5):929-935
A novel integrated continuous-flow microfluidic system was designed and fabricated for solid phase peptide synthesis (SPPS) using conventional reactants. The microfluidic system was composed of a glass-based radial reaction chip, a diffluent chip, amino acid feeding reservoirs and continuous-flow reagent pathways. A tri-row cofferdam-fence structure was designed for solid phase supports trapping. Highly cross-linked, porous and high-loading 4-(hydroxymethyl)phenoxymethyl polystyrene (HMP) beads were prepared for microfluidic SPPS. The transfer losses, hazardous handling and time-consuming processes in traditional peptide cleavage steps were avoided by being replaced with the on-chip cleavage treatment. Six peptides from an antibody affinity peptide library against β-endorphin with different lengths and sequences were obtained simultaneously on the constructed continuous-flow microfluidic system within a short time. This microfluidic system is automatic, integrated, effective, low-cost, recyclable and environment-friendly for not only SPPS but also other solid phase chemical syntheses.  相似文献   

8.
Microwave-promoted Suzuki-Miyaura coupling reaction of aryl halides attached to a cycloalkane-soluble platform was accomplished in a cycloalkane-based thermomorphic biphasic system. Following irradiation and subsequent cooling, the monophasic reaction mixture immediately formed a biphasic solution to allow facile workup and separation of the product.  相似文献   

9.
用顺序注射系统控制微流控芯片中的Edman降解反应, 提高了Edman降解的自动化程度, 得到蛋白质或多肽N-端氨基酸残基结构的准确信息. 对固体吸附材料的选择、顺序注射程序的设计和优化及影响Edman降解反应的因素进行了讨论. 该控制技术在蛋白质组学的研究中有一定的应用前景.  相似文献   

10.
Determination of SARS-coronavirus by a microfluidic chip system   总被引:4,自引:0,他引:4  
Zhou X  Liu D  Zhong R  Dai Z  Wu D  Wang H  Du Y  Xia Z  Zhang L  Mei X  Lin B 《Electrophoresis》2004,25(17):3032-3039
  相似文献   

11.
Highly efficient molecular extractions in continuous flow microfluidic systems are demonstrated utilising the rapid mixing properties of biphasic segmented flow in conjunction with suspended micro-particulate adsorbents. A continuous flow technique providing potential for continual on-line sample enrichment, purification and clean-up in chemical synthesis, and sample preparation.  相似文献   

12.
Macrocyclization via rhodium-catalyzed intramolecular [2 + 2 + 2] annulation of triynes has been explored in an aqueous-organic biphasic system. The biphasic system controls the concentration of hydrophobic substrates in the aqueous reaction phase and offers diluted reaction conditions without the use of a slow addition technique. The system also achieves selective cross-annulation between hydrophobic diynes and hydrophilic alkynes.  相似文献   

13.
Significant advances have been made in developing microfluidic polymerase chain reaction (PCR) devices in the last two decades. More recently, microfluidic microdroplet technology has been exploited to perform PCR in droplets because of its unique features. For example, it can prevent crossover contamination and PCR inhibition, is suitable for single-cell and single-molecule analyses, and has the potential for system integration and automation. This review will therefore focus on recent developments on droplet-based continuous-flow microfluidic PCR, and the major research challenges. This paper will also discuss a new way of on-chip flow control and a rational design simulation tool, which are required to underpin fully integrated and automated droplet-based microfluidic systems. We will conclude with a scientific speculation of future autonomous scientific discoveries enabled by microfluidic microdroplet technologies.  相似文献   

14.
Free radical polymerization in microfluidic devices modeled with the help of numerical simulations is discussed. The simulation method used allows the simultaneous solvation of partial differential equations resulting from the hydrodynamics, thermal and mass transfer (convection, diffusion and chemical reaction). Three microfluidic devices are modeled, two interdigital multilamination micromixers respectively with a large and short focusing section, and a simple T-junction followed by a microtube reactor together considered as a bilamination micromixer with a large focusing section. The simulations show that in spite of the heat released by the polymerization reaction, the thermal transfer in such microfluidic devices is high enough to ensure isothermal conditions. Moreover, for low radial Peclet number, microfluidic devices with a large focusing section can achieve better control over the polymerization than a laboratory scale reactor as the polydispersity index obtained is very close to the theoretical limiting value. As the characteristic dimension of the microfluidic device increases, i.e. for high radial Peclet number, the reactive medium cannot be fully homogenized by the diffusion transport before leaving the system resulting in a high polydispersity index and a loss in the control of the polymerization.  相似文献   

15.
The application of microfluidic devices for DNA amplification has recently been extensively studied. Here, we review the important development of microfluidic polymerase chain reaction (PCR) devices and discuss the underlying physical principles for the optimal design and operation of the device. In particular, we focus on continuous-flow microfluidic PCR on-chip, which can be readily implemented as an integrated function of a micro-total-analysis system. To overcome sample carryover contamination and surface adsorption associated with microfluidic PCR, microdroplet technology has recently been utilized to perform PCR in droplets, which can eliminate the synthesis of short chimeric products, shorten thermal-cycling time, and offers great potential for single DNA molecule and single-cell amplification. The work on chip-based PCR in droplets is highlighted.  相似文献   

16.
本文以作者在温控水/有机两相及温控非水液/液两相催化领域的研究工作为主线,对这一领域的研究进展作一评述,重点是环绕经典水/有机两相催化体系存在“应用范围受底物水溶性限制”的根本问题展开。特别是对“温控相转移催化”作了较为详细的介绍,同时,按体系介质不同,对氟两相体系、PEG两相体系、离子液体两相体系等非水液/液两相体系以及温控相分离催化分别作了阐述。  相似文献   

17.
任苹  刘京  蔺日胜  刘杨  黄美莎  胡胜  徐友春  李彩霞 《色谱》2018,36(7):599-607
建立了常染色体单核苷酸多态性(SNPs)复合检测芯片体系,用于未知个体的族群来源推断。基于前期筛选的74-SNPs组合,采用竞争性等位基因特异性聚合酶链式反应(PCR)的原理构建SNPs的扩增体系,在微流控芯片的每个反应孔内完成一个SNP的检测,通过高通量PCR微流控芯片实现了其中72个SNPs的同步检测。芯片的扩增由平板PCR仪完成,反应孔的荧光信号通过激光共聚焦扫描仪检测,最终通过提取的荧光值进行结果分析。使用该芯片检测获得52份样本的SNPs分型,分型结果的准确率为100%。以57个人群的3628个样本为参考人群数据库,进行20份样本的族群来源推断,推断结果与样本的实际来源一致。本研究建立的常染色体72个SNPs微流控芯片体系可以有效地进行SNP多态性分析检测,基于参考数据库,20份检测样本族群推断的准确性为100%。  相似文献   

18.
This study describes our development of a microfluidic reaction scheme for the synthesis of fused indoline ring systems found in several bioactive compounds. We have utilized a continuous-flow microfluidic reactor for the reaction of hydrazines with latent aldehydes through the interrupted Fischer indolization reaction to form fused indoline and azaindoline products. We have identified optimal conditions and evaluated the scope of this microfluidic reaction using various hydrazine and latent aldehyde surrogates. This green chemistry approach can be of general utility to rapidly produce indoline scaffolds and intermediates in a continuous manner.  相似文献   

19.
以简单、快速的微流控酶促反应方法实现了尿素浓度的可视化检测。 在微流控双水相液滴流动中,利用脲酶水解尿素生成碳酸铵使液滴内的中性红指示剂变色,并对液滴颜色强度进行分析来确定待测样品中尿素的浓度,检测范围可达到0~50 mg/mL。 双水相体系克服了传统油水分析检测平台生物相容性低的缺陷。 液滴流以较少的试剂消耗、极大的比表面积、微米级的扩散距离大大提高了反应速率,导致了较快的分析检测速度,将检测时间缩短为20 s左右。 为应用化学领域的尿素快速分析检测提供借鉴和参考。  相似文献   

20.
温控配体与液/液两相催化   总被引:2,自引:2,他引:2  
 以作者近年的研究工作为主,对液/液两相催化研究领域取得的进展做一综述.着重介绍了以温控配体为基础的新型液/液两相催化过程温控相转移催化(thermoregulatedphasetransfercatalysis,TRPTC)和温控相分离催化(thermoregulatedphase-separablecatalysis,TPSC)的基本原理及其在高碳烯烃氢甲酰化、芳香硝基化合物的CO选择性还原及烯烃加氢等反应中的应用.基于温控配体在水中的“浊点”特性而提出的温控相转移催化概念,为从根本上解决水/有机两相催化 的适用范围受底物水溶性限制的问题提供了一条新途径.而利用温控配体在某些有机溶剂中存在临界溶解温度(CST)的特性而实现的温控相分离催化,则使在高于临界溶解温度的反应温度时为均相的反应体系,在低温(<CST)时则分成两相,催化剂自成一相,形成一种具有“均相反应、两相分离”特色的液/液两相催化新体系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号