首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the Pechini method, pigments with spinel structure (Zn7Sb2O12)were synthesized by substitution of the cation Zn2+ by Co2+, in compounds with different concentrations of Sb2O3. The doping resulted in CoxZn(7–x)Sb2O12 phases(x=1–7) that were isomorphs to spinel, denominated as samples A and B. After thermal treatment at 400°C for 1 h, the powders were characterized by thermogravimetry(TG) and differential thermal analysis (DTA). The results indicate a different behavior whena higher amount of Sb2O3 is used, due to the presence of a secondary phase (ilmenite). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
In this work, spinels with the general formula Zn2?xCoxTiO4 were synthesized by the polymeric precursor method and thermally treated at 1,000 °C. The powder precursors were characterized by TG/DTA. A decrease in the DTA peak temperature with the amount of zinc was observed. After the thermal treatment, the characterizations were performed by XRD, IR, colorimetry and UV/VIS spectroscopy. The XRD patterns of all the samples showed the presence of the spinel phase. Infrared spectroscopy showed the presence of ester complexes for Zn2TiO4 after thermal treatment at 500 °C, which disappeared after cobalt addition, indicating that organic material elimination was favored.  相似文献   

3.
The glycoxide complexes Zn1–x Co x (HCOO)(HOCH2CH2O)1/2 and Zn1−x Co x (OCH2CH2O) (0 ≤ x ≤ 0.3) have been synthesized by heating ethylene glycol solutions of zinc formate Zn(HCOO)2 · 2H2O or its mixtures with cobalt formate Co(HCOO)2 · 2H2O. The crystals of these complexes have the shape of filaments (needles, bars) and distorted octahedra, respectively. A new method in which these complexes are used as the precursor is suggested for the synthesis of low-dimensional wurtzite-like Zn1−x Co x O. The shape of the precursor crystals is fully inherited by Zn1−x Co x O resulting from their heat treatment. The Zn1−x Co x O solid solutions show high photocatalytic activity in hydroquinone oxidation in aqueous solution under UV or blue light irradiation, and their activity increases as their cobalt content is increased.  相似文献   

4.
The non - centrosymmetric tetragonal inverse spinel structure of LiZnNbO4 has been explored with a view to prepare new colored compounds. The substitution of Co2+, Ni2+, Fe2+, Mn2+, and Cu2+ ions were attempted in the place of Zn2+ ions and Sb5+ ions in place of Nb5+ ions. The studies indicated that 0.75 Zn2+ ions in LiZnNbO4 can be replaced by Co2+ ions and 0.5 Zn2+ ions in LiZnNb0.5Sb0.5O4 compound. The substitution of Co2+ ions gives rise to different shades of blue color in Li(Zn1-xCox)NbO4 compounds and from ink blue to blue-green color in Li(Zn1-xCox)(Nb0.5Sb0.5)O4 compounds. The different colors observed in the present study were explained by the traditional allowed d-d transitions as well as the metal-to-metal charge transfer (MMCT) transitions involving Nb5+ (4d0) ions and partially filled 3d electrons. The SHG studies indicate that the prepared compounds are SHG active. All the compounds exhibit reasonable dielectric behavior with low loss. The XPS studies confirm the oxidation states of the different substituted ions. Raman studies indicate variations in the bands due to the substitutions in the parent LiZnNbO4 phase. Magnetic studies on the Co2+ ions substituted compounds suggest antiferromagnetic behavior.  相似文献   

5.
Liquid phase benzylation of benzene with benzyl chloride was investigated over different compositions of cobalt zinc ferrite (CoxZn1-xFe2O4, x-0.0, 0.25, 0.5, 0.75, 1.0) nano composites, synthesized by sol–gel method. The un-substituted cobalt ferrite catalyst exhibited excellent activity among the series effecting complete conversion of benzyl chloride in 60?min at 90?°C with 100% selectivity for diphenyl methane. The effect of various reaction parameters on the reaction was studied. Higher benzylation activity of cobalt ferrite nanocomposite is attributed to the presence of higher quantities of moderately acidic sites and a good correlation was observed between surface acidity and benzylation activity of catalysts. The catalysts are reusable without any significant structural change as indicated by X-ray Diffraction (XRD) and Atomic Absorption Spectrophotometer (AAS).  相似文献   

6.
Physicochemical analysis is used to study phase equilibria and to design a concentration diagram for the Zn-Co-O system. ZnO-, CoO-, and Co3O4-based mixed crystals with a fixed Zn/Co ratio have different oxygen nonstoichiometry depending on the synthesis and annealing parameters. Metastable clustering is discovered in Zn1 ? x CoxO1 + δ wurtzite solid solutions, which exist stably in the range 0 ≤ x ≤ 0.2. Magnetization investigation shows that an antiferromagnetic order exists in homogeneous Zn1 ? x CoxO1 + δ grains; this order is conserved up to 625 ± 25 K. The substitution of praseodymium, neodymium, samarium, or europium for zinc(II) cations in Zn0.9Co0.1O1 + δ does not spoil the compensated antiferromagnetism of the wurtzite unit cell.  相似文献   

7.
Zn7Sb2O12 forms a full range of Co-containing α solid solutions, Zn7−xCoxSb2O12, with an inverse-spinel structure at high temperature. At low temperatures for x<2, the solid solutions transform into the low temperature β-polymorph. For x=0, the βα transition occurs at 1225±25 °C; the transition temperature decreases with increasing x. At high x and low temperatures, α solid solutions are formed but are non-stoichiometric; the (Zn+Co):Sb ratio is >7:2 and the compensation for the deficiency in Sb is attributed to the partial oxidation of Co2+ to Co3+. From Rietveld refinements using ND data, Co occupies both octahedral and tetrahedral sites at intermediate values of x, but an octahedral preference attributed to crystal field stabilisation, causes the lattice parameter plot to deviate negatively from the Vegard's law. Sub-solidus compatibility relations in the ternary system ZnO-Sb2O5-CoO have been determined at 1100 °C for the compositions containing ?50% Sb2O5.  相似文献   

8.
Y. Kseolu  A. Baykal  F. Gzüak  H. Kavas 《Polyhedron》2009,28(14):2887-2892
Microwave assisted combustion method was used to produce nanocrystalline cobalt doped zinc ferrite, CoxZn1−xFe2O4, from stoichiometric mixture of (Co(NO3)2·6H2O), (Fe(NO3)3·9H2O), (Zn(NO3)2·6H2O), and urea (CO(NH2)2) as a fuel. The structural, morphological and magnetic properties of the products were determined by X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) respectively. The average crystallite sizes obtained from XRD were between 35 and 39 nm. Magnetization measurements indicate that samples with less Co content have superparamagnetic behavior at room temperature. When the Co substitution increases the saturation magnetization due to the magnetic character of the Co cations substituting the non-magnetic Zn and coercivity also increase due to anisotropic nature of cobalt. The CoxZn1−xFe2O4 nanocrystals exhibit typical features of an assembly of magnetic particles with a distribution of blocking temperatures and indicate the spin-glass behavior.  相似文献   

9.
YBaCo4O7 compound is capable to intake and release a large amount of oxygen in the temperature range of 200–400°C. In the present study, the effect of Zn, Ga and Fe substitution for Co on the oxygen adsorption/desorption properties of YBaCo4O7 were investigated by thermogravimetry (TG) method. Due to fixed oxidation state of Zn2+ ions, the substitution of Zn2+ for Co2+ suppresses the oxygen adsorption of YBaCo4−xZnxO7. The substitution of Ga3+ for Co3+ also decreases the oxygen absorption capacity of YBaCo4−xGaxO7. This can be explained by the strong affinity of Ga3+ ions towards the GaO4 tetrahedron. Compared with Zn- and Ga-substituted samples, the drop of oxygen adsorption capacity is smallest for Fe-substituted samples because of the similar changeability of oxidation states of Co and Fe ions.  相似文献   

10.
Thermal decomposition of pure Fe(OH)3 and mixed with Co(OH)2 were studied using TG, DTA, kinetics of isothermal decomposition and electrical conductivity measurements. The thermal products were characterized by X-ray diffraction and IR spectroscopy. The TG and DTA analysis revealed the presence of Co2+ retards the decomposition of ferric hydroxide and the formation of -Fe2O3. The kinetics of decomposition showed that the mixed samples need higher energy to achieve thermolysis. The investigation of thermal products of mixed samples indicated the formation of cobalt ferrite on addition ofx=1 or 1.5 cobalt hydroxide. The electrical conductivity accompanying the thermal decomposition decreases in presence of low ratio of Co2+ (x=0.2) via the consumption of holes created during thermal analysis. The continuous increase in values on increasing of Co2+ concentration corresponded to the electron hopping between Fe2+ and Co3+.
Zusammenfassung Mittels TG, DTA und der Kinetik von Messungen der isothermen Zersetzung und der elektrischen Leitfähigkeit wurde die Zersetzung von Fe(OH)3 in reinem Zustand und vermengt mit Co(OH)2 untersucht. Die thermischen Produkte wurden mittels Röntgendiffraktion und IR-Spektroskopie charakterisiert. TG und DTA zeigen, daß die Zersetzung von Eisen(III)-hydroxid und die Bildung von -Fe2O3 durch Gegenwart von Co2+ verzögert wird. Die Zersetzungskinetik zeigt, daß die Mischproben mehr Energie für die Thermolyse benötigen. Die Untersuchung der thermischen Produkte zeigt die Bildung von Cobaltferrit bei Zusatz vonx=1 oder 1,5 Cobalthydroxid. Die elektrische Leitfähigkeit nimmt bei der thermischen Zersetzung in Gegenwart von niedrigen Co2+-Konzentrationen (x=0.2) durch Verbrauch der bei der Thermoanalyse geschaffenen Löcher ab. Das monotone Ansteigen der -Werte bei steigender Co2+-Konzentration stimmt mit dem Überspringen von Elektronen zwischen Fe2+ und Co3+ überein.
  相似文献   

11.
In regard to earth‐abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt‐substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low‐temperature solvolysis of molecular heterobimetallic Co4?xZnxO4 (x=1–3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self‐supported water‐oxidation electrocatalyst, which was observed by HR‐TEM on FIB lamellas of the EPD layers. The Co‐rich hydroxide‐oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours.  相似文献   

12.
A series of cobalt-inserted copper zinc ferrites, Cu0.6CoxZn0.4−xFe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4) having cubic spinel structure were prepared by the coprecipitation method. Various characterization techniques, including XRD, FTIR, UV-vis and I–V were used to investigate structural optical and electrical properties, respectively. The lattice constant was observed to be decreased as smaller ionic radii Co2+ (0.74 Å) replaced the higher ionic radii Zn2+ (0.82 Å). The presence of tetrahedral and octahedral bands was confirmed by FTIR spectra. Optical bandgap energy was determined in the range of 4.44–2.05 eV for x = 0.0 to 0.4 nanoferrites, respectively. DC electrical resistivity was measured and showed an increasing trend (5.42 × 108 to 6.48 × 108 Ω·cm) with the addition of cobalt contents as cobalt is more conductive than zinc. The range of DC electrical resistivity (108 ohm-cm) makes these nanomaterials potential candidates for telecommunication devices.  相似文献   

13.
Nano-crystalline zinc-substituted cobalt ferrite powders, Co1−xZnxFe2O4 (x = 0, 0.25, 0.5, 0.75 and 1), have been synthesized by the combustion route. The structural, morphological and magnetic properties of the products were determined and characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). X-ray analysis showed that the samples were cubic spinel. The increase in zinc concentration resulted in an increase in the lattice constant, unit cell volume, X-ray density, ionic radii, the distance between the magnetic ions and bond lengths on tetrahedral sites and octahedral sites of cubic spinel structure. Opposite behavior was observed for the average crystallite size of the as synthesized solids. The variation of saturation magnetization (Ms) value of the samples was studied. The maximum saturation magnetization value of the Coo.25Zn0.75Fe2O4 sample reached 76.87 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nano-crystalline magnetic ferrites for practical applications.  相似文献   

14.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

15.
Zn1?xCoxO nanoparticles were prepared by sol–gel method. The microstructure and dopant position were studied by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and extended X-ray absorption fine structure (EXAFS). The XRD patterns did not show any signal of impurity in the Zn1?xCoxO nanoparticles with Co concentration from x = 0.01 to 0.08. Neither did the HRTEM image for the highest concentration sample with x = 0.08. The nanoparticles have also been investigated by the EXAFS measurements at Co k-edge. The radical distribution functions, the fitting result of bond length and coordination numbers, indicated there was an impurity in the highest Co concentration sample with x = 0.08. Although most of the Co atoms were substituted for Zn sites in ZnO with x = 0.08, a few of Co atoms formed a microstructure similar to Co3O4, which was not found in the XRD and HRTEM. The room temperature ferromagnetic behaviour was found for x = 0.01 sample by superconducting quantum interference device .  相似文献   

16.
Herein, we highlight redox‐inert Zn2+ in spinel‐type oxide (ZnXNi1?XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen‐evolving condition, the newly formed VZn?O?Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N‐doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm?2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high‐rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1?XCo2O4 oxides after the OER test.  相似文献   

17.
In this study, the formation and characteristics of Sr-doped praseodymium alkaline-earth cobalt oxide were studied as a function of the strontium content (x). PrBa1?x Sr x Co2O5+d ceramics with x?=?0.0, 1/16, 1/8, 1/4, and 1/2.5 were prepared by solid-state reaction method from Pr6O11, BaCO3, SrCO3, and Co3O4. The solid-state reaction mechanisms were analyzed by differential thermal analysis (DTA) and thermogravimetry (TG) techniques to characterize properly the distinct thermal events occurring during synthesis of layered perovskite-type PrBa1?x Sr x Co2O5+d oxides. The X-ray diffraction (XRD) results were used to assist the interpretation of DTA?CTG analyses. The TG, DTA, and XRD results for the mixtures showed that the solid-state reaction between precursors was completed in a temperature range between 800 and 1000?°C. The strong influence of strontium contents (x) on the solid-state reaction temperatures and PrBa1?x Sr x Co2O5+d structure was found.  相似文献   

18.
In the Ca-Co-Zn-O system, we have determined the tie-line relationships and the thermoelectric properties, solid solution limits, and structures of two low-dimensional cobaltite series, Ca3(Co, Zn)4O9−z and Ca3(Co,Zn)2O6−z at 885 °C in air. In Ca3(Co,Zn)4O9−z, which has a misfit layered structure, Zn was found to substitute in the Co site to a limit of Ca3(Co3.8Zn0.2)O9−z. The compound Ca3(Co,Zn)2O6−z (n=1 member of the homologous series, Can+2(Co,Zn)n(Co,Zn)′O3n+3−z) consists of one-dimensional parallel (Co,Zn)2O66− chains that are built from successive alternating face-sharing (Co,Zn)O6 trigonal prisms and ‘n’ units of (Co,Zn)O6 octahedra along the hexagonal c-axis. Zn substitutes in the Co site of Ca3Co2O6 to a small amount of approximately Ca3(Co1.95Zn0.05)O6−z. In the ZnO-CoOz system, Zn substitutes in the tetrahedral Co site of Co3O4 to the maximum amount of (Co2.49Zn0.51)O4−z and Co substitutes in the Zn site of ZnO to (Zn0.94Co0.06)O. The crystal structures of (Co2.7Zn0.3)O4−z, (Zn0.94Co0.06)O, and Ca3(Co1.95 Zn0.05)O6−z are described. Despite the Ca3(Co, Zn)2O6−z series having reasonably high Seebeck coefficients and relatively low thermal conductivity, the electrical resistivity values of its members are too high to achieve high figure of merit, ZT.  相似文献   

19.
Cu0.7 x Co x Zn0.3Fe2O4 (0 ≤ x ≤ 0.5) nanoparticles are prepared by sol–gel auto combustion method, using copper nitrate, zinc nitrate, ferric nitrate, cobalt nitrate, and citric acid as the starting materials. The process takes only a few minutes to obtain as-received Co-substituted Cu–Zn ferrite powders. X-ray diffraction (XRD), vibrational sample magnetometer and thermo gravimetric analysis are utilized in order to study the effect of variation in the Co substitution and its impact on particle size, lattice constant, density, cation distribution and magnetic properties like magnetization, coercivity, remanent magnetization, ferritization temperature and associated water content. Lattice parameter found to increase with increasing Co content, whereas X-ray density, bulk density, particle size showed decreasing trend with the Co content. Cation distribution indicates that the Co and Cu ion show preference towards octahedral [B] site, Zn occupy tetrahedral (A) site whereas Fe occupy both tetrahedral (A) and octahedral [B] site. Redistribution of cations takes place for x > 0.3. Saturation magnetization (Ms) increases from 52.99 to 79.62 emu/g (x ≤ 0.3), for x > 0.3 Ms decreases with increase in Co content x. However, coercivity, magnetocrystalline anisotropy and remanent magnetization increases with the Co2+ substitution.  相似文献   

20.
Zusammenfassung Im System ZnO–Sb2O5 existieren zwei Spinellphasen (I) und (III) gleicher Zusammensetzung Zn7Sb2O12. Außerdem konnte noch eine weitere Modifikation (II) mit einer niedrigsymmetrischen Struktur aufgefunden werden.In (II) und (III) wurden Cu2+, Ni2+ und Co2+ als farbgebende Kationen eingebaut. Die spektralphotometrische Untersuchung ergab, daß Zn2+ in (II) sowohl oktaedrisch als auch tetraedrisch koordiniert ist. Im Spinell (III) wird Cu2+ sowohl in Tetraeder-und Oktaederlücken, Ni2+ nur in Oktaeder- und Co2+ vorwiegend in Oktaederlücken eingebaut.In the system ZnO–Sb2O5 exist two phases (I) and (III) with the spinel structure and the same composition Zn7Sb2O12. Besides these another modification (II) with a structure of lower symmetry could be found.The colouring cations Cu2+, Ni2+, Co2+ have been incorporated in (II) and (III). The spectrophotometrical investigation shows that Zn2+ occupies in (II) octahedral and tetrahedral sites. In the spinel (III) Cu2+ is incorporated tetrahedrally and octahedrally, Ni2+ only octahedrally and Co2+ predominantly octahedrally.Mit 4 Abbildungen1. Mitt.:H. Kasper, Z. anorg. allgem. Chem. (im Druck).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号