首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo measurement of T2 relaxation times in multiple sclerosis (MS) lesions by magnetic resonance imaging (MRI) is potentially useful for the evaluation of the disease activity. Seven patients with definite MS were investigated over a period of three years (19 examinations), using a whole-body MRI scanner operating at 0.15 T with a specially designed high-power radio-frequency head coil. A modified CPMG sequence with a 180 degree pulse interval of TE = 6 msec and 128 echoes was used for the T2 relaxation measurement of the areas of increased signal (AIS) and white matter (WM). A biexponential T2 analysis of each pixel of the spin-echo images was computed. The T2 relaxation processes were found to be a monoexponential function in WM. The T2 relaxation times of apparently normal white matter in MS patients was significantly longer than in control subjects. The T2 relaxation curves of the AIS were found in most cases to fit a biexponential function characterized by a short and a long T2. T2 long relaxation times of AIS were spread out over a wide range (150-560 msec). The study of T2 long histograms shows that some AIS can be divided into two or three parts depending on the T2 long values. Each of these parts may correspond to a pathological process such as edema, demyelination and gliosis. Evolution of T2 relaxation times over a period of time cannot as yet be correlated with modifications in the clinical state.  相似文献   

2.
Biexponential T(2) relaxation of the localized water signal can be used for segmentation of spectroscopic volumes. To assess the specificity of the components an iterative relaxation measurement of the localized water signal (STEAM, 12 echo times, geometric spacing from 30 ms to 2000 ms) was combined with magnetization transfer (MT) saturation (40 single lobe pulses, 12 ms duration, 1440 degrees nominal flip angle, 1 kHz offset, repeated every 30 ms). Voxels including CSF were examined in parietal cortex and periventricular parietal white matter (10 each), as well as 13 voxels in central white matter and 16 T(1)-hypointense non-enhancing multiple sclerosis lesions without CSF inclusion. Biexponential models (excluding myelin water) were fitted to the relaxation data. In periventricular VOIs the component of long T(2) (1736 +/- 168 ms) that is attributed to CSF was not affected by MT. In cortical VOIs this component had markedly shorter T(2)'s (961 +/- 239 ms) and showed both attenuation and prolongation with MT, indicating contributions from tissue. MS lesions and central WM showed a second tissue component of intermediate T(2) (160-410 ms). In white matter similar MT attenuation indicated strong exchange between the two tissue components, prohibiting segmentation. In MS lesions, however, markedly less MT of the intermediate component was found, which is consistent with decreased cellularity and exchange in a region that is large compared to diffusion motion.  相似文献   

3.
Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves.  相似文献   

4.
Proton relaxation time measurements were performed on a standard whole body MR imager operating at 1.5 T using a conventional surface coil of the manufacturer. A combined CP/CPMG multiecho, multislice sequence was used for the T1 and T2 relaxation time measurements. Two repetition times of 2000 ms (30 echoes) and 600 ms (2 echoes) with 180 degrees-pulse intervals of 2 tau = 22 ms were interleaved in this sequence. A two-exponential T2 analysis of each pixel of the spin-echo images was computed in a case of an acoustic neurinoma. The two-exponential images show a "short" component (T2S) due to white and gray matter and a "long" component (T2S) due to the cerebrospinal fluid. In the fatty tissue two components with T2S = 35 +/- 3 ms and T2L = 164 +/- 7 ms were measured. Comparing with Gd-DTPA imaging the relaxation time images show a clear differentiation of vital tumor tissue and cerebrospinal fluid.  相似文献   

5.
Multi-echo Carr-Purcell-Meiboom-Gill (CPMG) imaging sequences were implemented on 1.5 T and 4.0 T imaging systems to test their ability to measure in vivo multi-component T2 relaxation behavior in normal guinea pig brain. The known dependence of accurate T2 measurements on the signal-to-noise ratio (SNR) was explored in vivo by comparing T2 decay data obtained using three methods to increase SNR (improved RF coil design, signal averaging and increased magnetic field strength). Good agreement between T2 values of nickel-doped agarose phantoms was found between imaging and spectroscopic methods. T2 values were determined for gray matter (GM) and white matter (WM) locations from images of guinea pig brain in vivo. T2 measurements of GM were found to be monoexponential at both field strengths. The mean T2 times for GM were 71 ms at 1.5 T, and 53 ms at 4.0T. The highest average SNR was achieved using an improved RF coil at 4.0T. In this case, two peaks were extracted in WM, a "short" T2 peak at approximately 6 ms, and a "medium" T2 peak at approximately 48 ms. T2 values in GM and the major component of WM were significantly decreased at 4.0T compared to 1.5 T. The improved SNR attained with this optimized imaging protocol at 4.0T has allowed for the first time extraction of the myelin-sensitive T2 component of WM in animal brain in vivo.  相似文献   

6.
Recently, a number of magnetic resonance imaging protocols have been reported that seek to exploit the effect of dissolved oxygen (O2, paramagnetic) on the longitudinal 1H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo. Bayesian-based model selection was applied to a cohort of five competing relaxation models: (1) monoexponential, (2) stretched-exponential, (3) biexponential, (4) Gaussian (normal) R 1-distribution, and (5) gamma R 1-distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.  相似文献   

7.
A 48-echo pulse sequence with five different echo-spacing combinations was examined to determine how one can most effectively measure the T2 relaxation characteristics of cerebral tissue containing a long T2 component. For each scan, the first 32 echoes had an echo spacing of 10 ms, while the spacing for Echoes 33-48 (DeltaTE2) was 10, 20, 30, 40 or 50 ms. In an in vivo study using 10 normal volunteers, it was found that the resolution of T2 distribution peaks for both myelin water (approximately 20 ms) and intracellular/extracellular (IE) water (approximately 80 ms) improved as DeltaTE2 increased. The geometric mean T2 values of the main peak agreed within the error for all DeltaTE2 values. A phantom study simulated T2 relaxation distributions that are expected in the brains of patients with demyelinating diseases. For phantoms in which the T2 values of the IE and lesion (200-500 ms) water compartments were separated by at least a factor of 3, each compartment in the distribution was better resolved when DeltaTE2=40 or 50 ms. On the basis of these results, we recommend the use of extended DeltaTE2 values for imaging patients with lesions, without the risk of losing valuable short T2 information.  相似文献   

8.
Serial MR scans were performed with the 2DFT imaging method and the filtered backprojection imaging method on 12 patients with multiple sclerosis in acute phase, 4 in a relapsing/remitting form, and 8 in a progressive form, before, during and after ACTH treatment. Both T1 and T2mono relaxation times, obtained by fitting transverse magnetization decay curves with a monoexponential function within the apparently normal white matter and the areas of increased signal, were measured. With the backprojection method it was possible to fit the transverse magnetization decay curve with a biexponential function and obtain T2long and T2short relaxation times. The T2mono and T1 relaxation times of the apparently normal white matter were significantly different from those obtained for volunteers, but no significant differences were found before, during, or after treatment. The transverse magnetization decay curves of the areas of increased signal were better fitted by a biexponential function. No significant changes in these relaxation times were observed after ACTH treatment. These results argue against an anti-oedematous action of ACTH and may suggest that it has an immunosuppressant effect.  相似文献   

9.
In vivo pelvic imaging of 39 women and in vitro relaxation time measurements of four uterine specimens were performed using an ultra low field (0.02 T) MRI unit. Average T1 times measured in vitro at 37 degrees C for the myometrium and endometrium were 206 ms (SD 47 ms) and 389 ms (SD 21 ms), respectively. Corresponding T2 times were 95 ms (SD 20 ms) and 167 ms (SD 13 ms). The proton relaxation of almost all myometrial specimens proved to be biexponential, but of all endometrial specimens was monoexponential. Contrast measurements between endometrium versus myometrium and myometrium versus the junctional zone were performed after imaging 18 volunteer women using different pulse sequence parameters. Normal uterine structures were optimally demonstrated by SE 700/70. Relatively short repetition times could be used, because spin-lattice relaxation times were short at the low magnetic field. Consequently, the short repetition times allowed averaging of four excitations to create adequate images within an acceptable scanning time. In addition to T2-weighted images a T1-weighted inversion recovery sequence with a short inversion time of 50 ms (IR 1000/50/40) adequately differentiated the three uterine zones. Although pathologic lesions of the uterus including leiomyomas, anomalies and carcinomas were well demonstrated, especially with the T2-weighted spin echo pulse sequence, further investigations are needed to evaluate the optimal technique for ultra low field MR imaging of uterine tumors.  相似文献   

10.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time t = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

11.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time T = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

12.
A reliable protocol for proton T2 mapping of the parotid region was set up for future characterization of parotid gland disease. A Carr-Purcell-Meiboom-Gill sequence, phase compensated, available on our 1.5 T imager, was selected and acquisition parameters were chosen on the basis of tests performed on phantoms (agarose-doped gels with T2 in the physiological range). Some experiments were carried out to evaluate the accuracy of T2 calculations for selective and nonselective refocussing pulses, for image uniformity corrections, and for different situations of slice shift and repetition times. The chosen protocol was then applied to in vivo evaluations to check the long-term precision by means of repeated measurements performed on the same subject over a 2-month period. Two or more reference gels were positioned both in the phantom and volunteer at the edge of the field-of-view (FOV). Image postprocessing consisted of an automatic procedure, written by the authors in Fortran 77, that selected the best fit for each pixel between mono- and biexponential decay models, and prepared four parametric images (T2 and Rho slow and fast contribution, Rho being a function of proton density and of T1) that may be used for future elaborations. The phantom experiment results showed an accuracy of 2.5% if a linear correction was performed using the reference gels at the edge of the FOV. No significant differences in accuracy were found between selective and nonselective refocussing pulse, and a homogeneity correction was not demonstrated necessary. The measurements performed on four volunteers showed that the best decaying model for healthy parotid tissue was monoexponential. Evaluated T2 resulted 80.18 ± 6.11 ms (72.96 ± 4.97 ms for uncorrected results). Long-term reproducibility of the group of measurements from one volunteer, summarizing all the measurement errors, ranged from 0.9 to 8.5%. The two-way ANOVA that was carried out considering the two classes of volunteers and of parotid positions (right or left) showed that differences found between the two parotids were not significant, while T2 differences among individuals are significant if a probability level higher than 1.1% is accepted. As in this cases, the main source of error can be attributed to the biological variations among individuals. Future statistics collected on patients for the T2 evaluations of the pathologic tissue will clarify whether the T2 relaxation is a sufficient parameter for T2 discrimination of healthy and pathologic tissue.  相似文献   

13.
In this study we address the question of quantification of muscle lactate using double quantum filtered (DQF) (1)H NMR spectroscopy where dipolar and scalar coupled spectra are acquired. For this, lactate content in muscle samples was independently determined using a conventional enzymatic assay and DQF, (1)H NMR spectroscopy. NMR quantification of lactate relied on comparison of muscle spectra with similarly acquired spectra of standard lactate solutions. Transverse relaxation, T(2), and dipolar coupling effects were investigated at two different orientations of muscle fibers relative to B(o) and at various lactate concentrations. In all cases, we found a biexponential T(2) decay of the lactate methyl signal with a long T(2) of 142 ms (+/-8 ms, n=24) and a short T(2) of 37 ms (+/-6 ms, n=24). Lactate content of muscle determined by NMR spectroscopy agreed with the results obtained from enzymatic assays of the same samples provided that T(2) effects as well as the presence of both scalar and dipolar coupling interactions of lactate in muscle were taken into account.  相似文献   

14.
This study investigated the feasibility of an MRI protocol providing whole-body T2* maps at 1.5 T. Seven healthy volunteers (mean age=30.1+/-3.7, three women and four men) and two patients (both male, 53 and 46 years old) affected by transfusion-dependent anemias participated in the study. Coronally oriented images of five subsequent body levels were acquired using a fat-suppressed multiecho 2D gradient-echo sequence (12 echo times ranging from 4.8 to 76.3 ms were selected) and afterwards composed. Parametrical T2* maps of the whole body were reconstructed on a pixel-by-pixel basis. For both, healthy volunteers and patients, representative T2* values were computed from extended regions of interest (ROIs). Good-quality whole-body T2* maps were computed in all volunteers and patients. In healthy volunteers, T2* values were assessed in the cerebral white (58.5+/-4.2 ms) and gray (81.4+/-5.5 ms) matter, liver (34.3+/-7.0 ms), spleen (63.5+/-3.3 ms), kidneys (65.4+/-10.3 ms) and skeletal muscles (~30 ms). The liver presented faster relaxation rates in males as compared to females. One patient (serum ferritin concentration=927 microg/dl) showed shortened T2* values in liver (3.6+/-5.5 ms), spleen (3.1+/-4.8 ms), kidneys (11.1+/-7.1 ms) and muscles (25.1+/-3.4 ms). The second patient (serum ferritin concentration=346 microg/dl) presented reduced T2* values in liver (3.9+/-7.3 ms), spleen (20.1+/-9.8 ms) and kidneys (24.6+/-7.7 ms). The presented technique may find clinical application in the assessment of the iron burden in the entire body, and in monitoring of chelation therapies in patients treated with frequent blood transfusions.  相似文献   

15.
The purpose of this study was to evaluate the non-Gaussian behavior of diffusion related signal decay of the ex vivo murine liver tissues from a dietary model of hepatic fibrosis. To this end, a biexponential formalism was used to model high b-value diffusion imaging (up to 3500 s/mm2), the findings of which were correlated with liver histopathology and compared to a simple monoexponential model. The presence of a major, fast diffusing component and a minor, slow diffusing component was demonstrated. With increasing hepatic fibrosis, the fractional contribution of the fast diffusing component decreased, as did the diffusion coefficient of the fast diffusing component. Strong correlation between the degrees of liver fibrosis and a two-predictor regression model incorporating parameters of the biexponential model was found. Using Akaike's Information Criterion analyses, the biexponential model resulted in an improved fit of the high b-value diffusion data when compared to the monoexponential model.  相似文献   

16.

Purpose

The purpose of this study was to investigate the need for biexponential signal decay modeling for prostate cancer diffusion signal decays with b-factor over an extended b-factor range.

Materials and Methods

Ten healthy volunteers and 12 patients with a bulky prostate cancer underwent line scan diffusion-weighted MR imaging in which b-factors from 0 to 3000 s/mm2 in 16 steps were sampled. The acquired signal decay curves were fit with both monoexponential and biexponential signal decay functions and a statistical comparison between the two fits was performed.

Results

The biexponential model provided a statistically better fit over the monoexponential model on the peripheral zone (PZ), transitional zone (TZ) and prostate cancer. The fast and slow apparent diffusion coefficients (ADCs) in the PZ, TZ and cancer were 2.9±0.2, 0.7±0.2×10−3 mm2/ms (PZ); 2.9±0.4, 0.7±0.2×10−3 mm2/ms (TZ); and 1.7±0.4, 0.3±0.1×10−3 mm2/ms (cancer), respectively. The apparent fractions of the fast diffusion component in the PZ, TZ and cancer were 70±10%, 60±10% and 50±10%, respectively. The fast and slow ADCs of cancer were significantly lower than those of TZ and PZ, and the apparent fraction of the fast diffusion component was significantly smaller in cancer than in PZ.

Conclusions

Biexponential diffusion decay functions are required for prostate cancer diffusion signal decay curves when sampled over an extended b-factor range, providing additional, unique tissue characterization parameters for prostate cancer.  相似文献   

17.
A better knowledge of the NMR relaxation behavior of bone tissue can improve the definition of imaging protocols to detect bone diseases like osteoporosis. The six rat lumbar vertebrae, from L1 to L6, were analyzed by means of both transverse (T(2)) and longitudinal (T(1)) relaxation of (1)H nuclei at 20 MHz and 30 degrees C. Distributions of relaxation times, computed using the multiexponential inversion software uniform penalty inversion, extend over decades for both T(2) and T(1) relaxation. In all samples, the free induction decay (FID) from an inversion-recovery (IR) T(1) measurement shows an approximately Gaussian (solid-like) component, exp[-1/2(t/T(GC))2], with T(GC) approximately 12 micros (GC for Gaussian component) and a liquid-like component (LLC) with initially simple-exponential decay. Averaging and smoothing procedures are adopted to obtain the ratio alpha between GC and LLC signals and to get separate T(1) distributions for GC and LLC. Distributions of T(1) for LLC show peaks centered at 300-500 ms and shoulders going down to 10 ms, whereas distributions of T(1) for GC are single broad peaks centered at roughly 100 ms. The T(2) distributions by Carr-Purcell-Meiboom-Gill at 600 micros echo spacing are very broad and extend from 1 ms to hundreds of ms. This long echo spacing does not allow one to see a peak in the region of hundreds of micros, which is better seen by single spin-echo T(2) measurements. Results of the relaxation analysis were then compared with densitometric data. From the study, a clear picture of the intratrabecular and intertrabecular (1)H signals emerges. In particular, the GC is presumed to be due to (1)H in collagen, LLC due to all the fluids in the bone including water and fat, and the very short T(2) peak due to the intratrabecular water. Overall, indications of some trends in composition and in pore-space distributions going from L1 to L6 appeared. Published results on rat vertebrae obtained by fitting the curves by discrete two-component models for both T(2) and T(1) are consistent with our results and can be better interpreted in light of the shown distributions of relaxation times.  相似文献   

18.
The influence of superplasticizer sulfonated naphthalene formaldehyde (SNF) on the hydration process of tricalcium silicate (C3S) paste was investigated by (1)H nuclear magnetic resonance spin-spin and spin lattice relaxation times. The addition of SNF superplasticizer to C3S paste clearly affects the morphology and growth rates of the hydration products, mainly by increasing the dormant period length, which lasts for several hours more than in conventional C3S hydrated paste, while reducing the acceleration period length. The relaxation data indicated that a pronounced delay occurs in the C3S hardening when sulfonated polymers are added to the makeup water. For all the analyzed samples, prepared with a water-to-C3S ratio of 0.4, the decay of the echo magnetization has been fitted by adopting both a monoexponential and a biexponential relaxation model in order to evaluate the contributions from water in different regimes of hydration.  相似文献   

19.
In this work, the usefulness of the inverse Laplace transformation (ILT) in the characterization of diffusion processes in the brain has been investigated. The method has been implemented on both phantom and in vivo cat brain data acquired at high resolution at 9.4 T. The results were compared with monoexponential and biexponential analyses of the same data. It is shown that in the case of diffusion restricted by white matter axonal tracts, the resulting diffusograms are in good agreement with the biexponential model. In gray matter, however, the non-monoexponential decay does not lead to a bimodal distribution in the ILT, even though the data can be fitted to a biexponential. This finding suggests the possibility of a distribution of diffusion coefficients rather than a discrete biexponential behavior. It is shown that this distribution is sensitive, for example, to experimental parameters such as the diffusion time. Thus, the ILT offers the possibility of implementing a unique tool for the analysis of heterogeneous diffusion, that is, the analysis of the diffusion coefficient distribution, which has the yet unexplored potential of being a valuable parameter in the characterization of tissue structure.  相似文献   

20.
In vivo diffusion tensor imaging of rat spinal cord at 7 T   总被引:3,自引:0,他引:3  
In vivo diffusion tensor imaging of normal rat spinal cord was performed using a multi-segmented, blipped EPI sequence at 7 T field strength. At high diffusion weighting, the signal exhibited a non-monoexponential decay that was fitted to a biexponential function, associated with the fast and slow components of diffusion in the cord tissue, using a nonlinear regression analysis along with a constrained optimization procedure. From the measured tensors, the eigenvalues and the maps of invariant scalar measures (fractional anisotropy, relative anisotropy, volume ratio, and trace) were calculated and analyzed statistically. The results were combined to quantitatively characterize the anisotropic properties of the fast and slow diffusions in white- and gray matter of live spinal cords.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号