首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper gives an overall picture of accreting neutron stars as obtained from X-ray observations. Theories of X-ray binaries, accreting processes, and X-ray emission mechanisms are reviewed to give qualitative understanding of physics relevant to X-rays from accreting neutron stars. Some quantitative results under simplified conditions are given for the application to the interpretation of observational results. Recent results obtained by Japanese X-ray astronomy satellites HAKUCHO and TENMA are presented in comparison with theoretical models.  相似文献   

2.
3.
We calculate the rapid proton ( rp) capture process of hydrogen burning on the surface of an accreting neutron star with an updated reaction network that extends up to Xe, far beyond previous work. In both steady-state nuclear burning appropriate for rapidly accreting neutron stars (such as the magnetic polar caps of accreting x-ray pulsars) and unstable burning of type I x-ray bursts, we find that the rp process ends in a closed SnSbTe cycle. This prevents the synthesis of elements heavier than Te and has important consequences for x-ray burst profiles, the composition of accreting neutron stars, and potentially galactic nucleosynthesis of light p nuclei.  相似文献   

4.
The evolution of a neutron-star r-mode driven unstable by gravitational radiation is studied here using numerical solutions of the full nonlinear fluid equations. The dimensionless amplitude of the mode grows to order unity before strong shocks develop which quickly damp the mode. In this simulation the star loses about 40% of its initial angular momentum and 50% of its rotational kinetic energy before the mode is damped. The nonlinear evolution causes the fluid to develop strong differential rotation which is concentrated near the surface and poles of the star.  相似文献   

5.
In the presence of a strong magnetic field and under conditions as realized in the crust and the superfluid core of neutron stars, the Hall drift dominates the field evolution. We show by a linear analysis that, for a sufficiently strong large-scale background field depending at least quadratically on position in a plane conducting slab, an instability occurs which rapidly generates small-scale fields. Their growth rates depend on the choice of the boundary conditions, increase with the background field strength, and may reach 10(3) times the Ohmic decay rate. The effect of that instability on the rotational and thermal evolution of neutron stars is discussed.  相似文献   

6.
Based on the Dirac equation describing an electron moving in a uniform and cylindrically symmetric magnetic field which may be the result of the self-consistent mean field of the electrons themselves in a neutron star, we have obtained the eigen solutions and the orbital magnetic moments of electrons in which each eigen orbital can be calculated. From the eigen energy spectrum we find that the lowest energy level is the highly degenerate orbitals with the quantum numbers pz = 0, n = 0, and m ≥0. At the ground state, the electrons fill the lowest eigen states to form many Landau magnetic cells and each cell is a circular disk with the radius λfree and the thickness λe, where λfree is the electron mean free path determined by Coulomb cross section and electron density and λe is the electron Compton wavelength. The magnetic moment of each cell and the number of cells in the neutron star are calculated, from which the total magnetic moment and magnetic field of the neutron star can be calculated. The results are compared with the observational data and the agreement is reasonable.  相似文献   

7.
Based on the Dirac equation describing an electron moving in a uniform and cylindrically symmetric magnetic field which may be the result of the self-consistent mean field of the electrons themselves in a neutron star, we have obtained the eigen solutions and the orbital magnetic moments of electrons in which each eigen orbital can be calculated. From the eigen energy spectrum we find that the lowest energy level is the highly degenerate orbitals with the quantum numbers pZ=0, n=0, and m≥0. At the ground state, the electrons fill the lowest eigen states to form many Landau magnetic cells and each cell is a circular disk with the radius λfree and the thickness λe, where λfree is the electron mean free path determined by Coulomb cross section and electron density and λe is the electron Compton wavelength. The magnetic moment of each cell and the number of cells in the neutron star are calculated, from which the total magnetic moment and magnetic field of the neutron star can be calculated. The results are compared with the observational data and the agreement is reasonable.  相似文献   

8.
The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to include strong magnetic field. It is found that magnetized neutron stars support higher maximum mass whereas the effect of magnetic field on radial stability for observed neutron star masses is minimal.  相似文献   

9.
Cui Zhu  Xia Zhou  Na Wang 《中国物理C(英文版)》2017,41(12):125104-125104
Pulsars are rapidly spinning, strongly magnetized neutron stars. Their electromagnetic dipole radiation is usually assumed to be at the expense of the rotational energy. In this work, we consider a new channel through which rotational energy could be radiated away directly via neutrinos. With this new energy conversion channel, we can improve the chemical heating mechanism that originates in the deviation from β equilibrium due to spin-down compression. The improved chemical and thermal evolution equations with different magnetic field strengths are solved numerically. The results show that the new energy conversion channel could raise the surface temperature of neutron stars, especially for weak field stars at later stages of their evolution. Moreover, our results indicate that the new energy conversion channel induced by the non-equilibrium reaction processes should be taken into account in the study of thermal evolution.  相似文献   

10.
In these lecture notes, I briefly discuss the present day situation and new discoveries in astrophysics of neutron stars focusing on isolated objects. The latter include soft gamma repeaters, anomalous x-ray pulsars, central compact objects in supernova remnants, the Magnificent Seven, and rotating radio transients. In the last part of the paper, I describe available tests of cooling curves of neutron stars and discuss different additional constraints that can help to confront theoretical calculations of cooling with observational data. The text was submitted by the author in English.  相似文献   

11.
Gravitationally redshifted absorption lines of Fe XXVI, Fe XXV, and O VIII were inferred recently in the x-ray spectrum of the bursting neutron star EXO 0748-676. We place an upper limit on the stellar magnetic field based on the iron lines. The oxygen absorption feature shows a multiple component profile that is consistent with Zeeman splitting in a magnetic field of approximately (1-2) x 10(9) G and for which the corresponding Zeeman components of the iron lines are expected to be blended together. In other systems, a field strength > or approximately 5 x 10(10) G could induce a blueshift of the line centroids that would counteract gravitational redshift and complicate the derivation of constraints on the equation of state of the neutron star.  相似文献   

12.
来小禹  徐仁新 《物理》2019,48(9):554-560
中子星是宇宙中一类极端致密的天体,其平均密度超过饱和核物质密度。对这类天体的研究,可以帮助人们了解极端条件下的物理性质,特别是深化关于引力和强力的认识。文章介绍了脉冲星和中子星的概念,并重点阐述了中子星内部结构的不同模型,以及如何通过最大质量和潮汐形变量等观测来检验这些模型。未来发现更多的双中子星并合或中子星黑洞并合事件,有望最终揭开中子星内部结构之谜。  相似文献   

13.
Neutron stars are studied in the framework of relativistic interacting field theory of nucleons, hyperons, and mesons. A large component of strange baryons is found, and in the interior the neutron population is minor.  相似文献   

14.
Generalized beta equilibrium involving nucleons, hyperons and isobars is examined for neutron star matter. The hyperons produce a considerable softening of the equation of state. It is shown that the observed masses of neutron stars can be used to settle a recent controversy concerning the nuclear compressibility. Compressibilities less than 200 MeV are incompatible with observed masses.  相似文献   

15.
张洁  刘门全  罗志全 《中国物理》2006,15(7):1477-1480
βdecay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions 67 Ni(β-)67 Cu and 62 Mn\beta -62 Fe are investigated as examples. The results show that a weak magnetic field has little effect on βdecay but a strong magnetic field (B>1012G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.  相似文献   

16.
17.
Arguments are presented to show that the BCS theory of superfluidity in its original form may not be applicable to neutron star matter over a wide range of density.  相似文献   

18.
The spatial distributions of old neutron stars (NSs) with ages 109 to 1010 yr in our Galaxy are investigated by Monte Carlo simulation under two different initial random velocity models.It is found that the scale heights of the distribution increase with the Galactic radial distance.The location of the peak of the NS distribution is closer to the Galactic center than that of their progenitors.The results from our detailed numerical analysis reveal that there is resemblance between the simulated old NS distribution and the structure of the observed HI disk.  相似文献   

19.
The effect of magnetic field decay on the chemical heating and thermal evolution of neutron stars is discussed in this paper. Our main goal is to study how the chemical heating mechanism and thermal evolution are changed by the field decay and how the magnetic field decay is modified by the thermal evolution. We compare stars cooling with chemical heating with one without chemical heating and find that the decay of the magnetic field is delayed significantly by the chemical heating. We find that the effect of chemical heating has been suppressed through the decaying magnetic field by the spin-down of the stars at a later stage. Compared with typical chemical heating, we find the decay of the magnetic field can even cause the surface temperature to turn down at an older age. When we discuss the cooling of neutron stars, we should consider the coupling effect of the magnetic field and the rotational evolution of neutron stars on the heating mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号