首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   

2.
A Modified version of the Dugdale-Bilby-Cottrell-Swinden (DBCS) model simulating the effect of plasticity at the tip of a crack in an infinite region was used by kfouri and rice (1978) to calculate the crack separation energy-rate GΔ corresponding to a finite crack growth step Δa during plane strain mode I crack extension. The loading consisted of a remote uniaxial tension σp applied normally to the plane of the crack. Using Rice's path-independent integral J to characterize the applied load in the crack tip region, and assuming the length R of the crack tip plastic zone to be small compared with the length of the crack, an analytical expression was derived relating the ratios (J/GΔ) and (2a/R) for small values of (2a/R). The analytical solution was incomplete in itself in that the value assumed in the plastic region of the DBCS model for the normal stress Y acting on the extending crack surfaces was the product of the yield stress in uniaxial tension σY and an unknown parameter C, the value of which depends on the effect of the local hydrostatic stresses in the case of plane strain conditions. The analytical solution was compared with a numerical solution obtained from a plane strain elastic-plastic finite element analysis on a centre-cracked plate (CCP) of material obeying the von Mises yield criterion. The value used for the yield stress was 310 MN/m2 and moderate isotropic linear hardening was applied with a tangent modulus of 4830 MN/m2. A uniaxial tension σp was applied on the two appropriate sides of the plate. The comparisons showed that the analytical and finite element solutions were mutually consistent and they enabled the value of C to be established at 1.91. In the present paper similar comparisons are made between the analytical solution and the finite element solutions for the CCP of the same material under different biaxial modes of loading. By assuming further that the form of the analytical solution does not depend on the details of the geometry and of the loading at remote boundaries, a comparison has also been made with the results of a finite element analysis on a compact tension specimen (CTS) made of the same material as the CCP. The different values of C obtained in each case are consistent with investigations by other authors on the effect of load biaxiality on crack tip plasticity.  相似文献   

3.
Crack initiation angle, under mixed mode loading at several strain rates, is analysed using an experimental–numerical approach. The physical phenomenon for the problem at hand is influenced by the local and global conditions. One of such factors is the strain rate at the crack tip. For this purpose, PMMA plates with centred angled cracks under mixed mode loading were tested. The strain rate at the neighbourhood of the crack tip before crack propagation was evaluated. Considering that this material is strain rate sensitive, the numerical models were calibrated with the modulus of elasticity measured in tension tests at the observed strain rates. Numerical evaluations were performed with the finite element method in conjunction with the volume energy density criterion. An improvement in the evaluation of the crack propagation angle was observed. In order to complete the analysis, the crack initiation angle was also evaluated with the strain energy density factor S, considering the mechanical properties of PMMA, as evaluated at the observed strain rates, and the stress intensity factors k1 and k2. Results are in agreement with those observed experimentally.  相似文献   

4.
A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.  相似文献   

5.
This paper discusses the crack driving force in elastic–plastic materials, with particular emphasis on incremental plasticity. Using the configurational forces approach we identify a “plasticity influence term” that describes crack tip shielding or anti-shielding due to plastic deformation in the body. Standard constitutive models for finite strain as well as small strain incremental plasticity are used to obtain explicit expressions for the plasticity influence term in a two-dimensional setting. The total dissipation in the body is related to the near-tip and far-field J-integrals and the plasticity influence term. In the special case of deformation plasticity the plasticity influence term vanishes identically whereas for rigid plasticity and elastic-ideal plasticity the crack driving force vanishes. For steady state crack growth in incremental elastic–plastic materials, the plasticity influence term is equal to the negative of the plastic work per unit crack extension and the total dissipation in the body due to crack propagation and plastic deformation is determined by the far-field J-integral. For non-steady state crack growth, the plasticity influence term can be evaluated by post-processing after a conventional finite element stress analysis. Theory and computations are applied to a stationary crack in a C(T)-specimen to examine the effects of contained, uncontained and general yielding. A novel method is proposed for evaluating J-integrals under incremental plasticity conditions through the configurational body force. The incremental plasticity near-tip and far-field J-integrals are compared to conventional deformational plasticity and experimental J-integrals.  相似文献   

6.
Hancock and Cowling measured the critical crack tip opening displacements, δf, at fracture initiation in HY-80 steel specimens of six different configurations. δf varied from 90 μm in a deeply double-edge-cracked tensile panel to 900 μm in a single-edge-cracked tensile panel.McMeeking and Parks, and Shih and German have shown by their finite element calculations that the characteristics of the plane strain crack tip fields in both large scale yielding and general yielding are strongly dependent on specimen geometry and load level.In this study, the plane strain crack tip fields in the specimens tested by Hancock and Cowling were calculated using the finite element method. The crack tip triaxial tensile stress field is strongly affected by specimen geometric constraint, and the state of the triaxial tensile stress in a crack tip region is monitored by the ratio between the local tensile stress and the effective stress, i.e., ( ), at a distance x=2δ from the crack tip. The values of ( ) vary from 3.1 for the double-edge-cracked tensile panel to 1.7 for the single-edge-cracked tensile panel. The δf measured by Hancock and Cowling correlates very well with the ratio ( ). δf is a measure of the fracture ductility of the material ahead of the crack tip, and the ductility decreases with an increase in the triaxial tensile stress, i.e., the ratio ( ).  相似文献   

7.
The governing equations for classical rate-independent plasticity are formulated in the framework of meshless method. The special J2 flow theory for three-dimensional, two-dimensional plane strain and plane stress problems are presented. The numerical procedures, including return mapping algorithm, to obtain the solutions of boundary-value problems in computational plasticity are outlined. For meshless analysis the special treatment of the presence of barriers and mirror symmetries is formulated. The crack growth process in elastic–plastic solid under plane strain and plane stress conditions is analyzed. Numerical results are presented and discussed.  相似文献   

8.
Finite element analyses were conducted in order to evaluate the mode I and mode II stress intensity factors for inclined edge cracks under cyclic contact load under rolling and rolling–sliding condition. The SIF range depends on crack orientation, crack length to Hertzian contact zone half-width ratio, friction between the crack faces and friction on the contact surface. The results were combined in two compact functions that determine the ΔKI and ΔKII values. The crack propagation mode and direction were investigated using both the maximum stress criterion and the minimum strain energy density criterion. The results are displayed in graph form, which allows a fast evaluation of the crack growth condition.  相似文献   

9.
Finite element method (FEM) has been used to analyze the stress and strain fields and the stress tri-axial levels around the tip of the crack under mode- II loading. The results show that: under mode- II loading, the direction of the maximum tensile stress and that of the maximum tri-axial levels (R o ) exist at an angle of –75. 3° from the original crack plane; the maximum shear stress andR o = 0 exist along the original crack plane.Mode- II loading experiment using BHW-35 steel at different temperatures show that there are two kinds of fracture mode, opening mode (or tensile mode) and sliding mode (or shear mode). A decrease in temperature causes the fracture mode to change from shear mode to tensile mode. For BHW-35 steel, this critical temperature is about –90 C. Actually, under any kind of loading mode (mode I . mode II , mode III or mixed mode), there always exist several kinds of potenital fracture modes (for example, opening mode, sliding mode, tearing mode or mixed mode). The effect of temperature under mode- II loading is actually related to the change of the elastic-plastic properties of the material.  相似文献   

10.
A tentative measure of the forces tending to cause crack growth—the apparent crack extension force—is defined within the framework of continuum mechanics. By an associated fracture criterion initiation of growth may be predicted as well as the direction of preferred growth. The theory is specialized to elastic, viscoelastic and elastic-plastic materials. Under specified conditions the apparent crack extension force may be expressed by surface integrals over the boundary of an arbitrary part of the body for quasi-static deformation and for steady-state propagation of the crack. For plane deformation and for infinitesimal deformation under plane stress conditions these surface integrals reduce to path independent line integrals which include the J integral by Rice[1] and the G integral by Sih[2] as special cases.  相似文献   

11.
Center-cracked panels loaded in biaxial tension are examined in this paper. Calibration relations for the J integral and the Q constraint factor are presented for a Ramberg–Osgood power law hardening material under plane stress and plane strain loadings. Two cases are examined: an isolated crack and a periodic array of cracks both under biaxial loading conditions. The latter has previously been studied for plane stress conditions. A number of different J estimation schemes are proposed based on the remote load and displacement and their dependence on geometry, biaxiality, and material properties is discussed. The variation of constraint, as characterised by Q, is also presented for plane stress and plane strain conditions. Simple slip line field solutions are derived for perfectly plastic conditions and the resulting limit load solutions are compared with numerically determined values. Implications for failure of cracked plates under biaxial loading are discussed.  相似文献   

12.
A number of plane stress numerical analyses of the mode I elastoplastic fracture mechanics problem have been performed in the past using the Huber–Mises yield criterion. This study employs instead the Tresca yield condition using an incremental theory of plasticity for a stationary crack. A commercial finite element program is used to solve the opening mode of fracture problem (mode I) for a square plate containing a central crack under generalized plane stress loading conditions. A biaxial uniform tensile traction is applied to the edges of a thin plate composed of a linear elastic non-work hardening material under small strain assumptions. The finite element results are compared with the analytical predictions of the Dugdale plastic strip model for a crack in an infinite plate subject to a biaxial uniform load at infinity.  相似文献   

13.
Crack growth resistance of shape memory alloys (SMAs) is dominated by the transformation zone in the vicinity of the crack tip. In this study, the transformation toughening behavior of a slowly propagating crack in an SMA under plane strain conditions and mode I deformation is numerically investigated. A small-scale transformation zone is assumed. A cohesive zone model is implemented to simulate crack growth within a finite element scheme. Resistance curves are obtained for a range of parameters that specify the cohesive traction-separation constitutive law. It is found that the choice of the cohesive strength t0 has a great influence on the toughening behavior of the material. Moreover, the reversibility of the transformation can significantly reduce the toughening of the alloy. The shape of the initial transformation zone, as well as that of a growing crack is determined. The effect of the Young's moduli ratio of the martensite and austenite phases is examined.  相似文献   

14.
Stress intensity factors are important in the analysis of cracked materials. They are directly related to the fracture propagation and fatigue crack growth criteria. Based on the analytical solution (Crouch, S.L., 1976. Solution of plane elasticity problems by displacement discontinuity method, Int. J. Numer. Methods Eng. 10, pp. 301–343; Crouch, S.L., Starfield, A.M., 1983. Boundary Element Method in Solid Mechanics, with Application in Rock Mechanics and Geological Mechanics, London, Geore Allon and Unwin, Bonton, Sydney) to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid, recently, the crack-tip displacement discontinuity element which can be classified as the left and right crack-tip displacement discontinuity elements are developed by the author Yan, X., (in press. A special crack-tip displacement discontinuity element, Mechanics Research Communications) to model the crack-tip fields to more accurately compute the stress intensity factors of cracks in general plane elasticity. In the boundary element implementation the left or the right crack-tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the ordinary non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. To prove further the efficiency of the suggested approach and provide more results of the stress intensity factors, in this study, analysis of an asymmetric branched crack bifurcated from a main crack in plane extension is carried out.  相似文献   

15.
In this study, a bilinear cohesive zone model is employed to describe the transformation toughening behavior of a slowly propagating crack along an interface between a shape memory alloy and a linear elastic or elasto-plastic isotropic material. Small scale transformation zones and plane strain conditions are assumed. The crack growth is numerically simulated within a finite element scheme and its transformation toughening is obtained by means of resistance curves. It is found that the choice of the cohesive strength t0 and the stress intensity factor phase angle φ greatly influence the toughening behavior of the bimaterial. The presented methodology is generalized for the case of an interface crack between a fiber reinforced shape memory alloy composite and a linear elastic, isotropic material. The effect of the cohesive strength t0, as well as the fiber volume fraction are examined.  相似文献   

16.
A damage accumulation model is presented for the study of the problem of crack initiation and stable growth in an elastic-plastic material. A centre-cracked specimen subjected to a uniform stress perpendicular to the crack plane is considered. A coupled stress and failure analysis is performed by using a finite element computer program based on J2-plasticity theory in conjunction with the strain energy density theory. After initial yielding, each material element follows a different equivalent uniaxial stress-strain behavior depending on the amount of energy dissipation by permanent deformation. A host of uniaxial stress-strain curves constituting parts of the same stress-strain curve were assigned to material elements for each increment of loading. The path-dependent nature of the onset of crack initiation and growth was revealed. The proposed model predicts faster crack growth rates than those obtained on the basis of a single uniaxial stress-strain curve and is closer to experimental observation.  相似文献   

17.
Propagation of a semi-infinite crack along the interface between an elastic half-plane and a rigid half-plane is analyzed. The crack advances at constant subsonic speed. It is assumed that, ahead of the crack, there is a finite segment where the conditions of Coulomb friction law are satisfied. The contact zone of unknown a priori length propagates with the same speed as the crack. The problem reduces to a vector Riemann–Hilbert problem with a piece-wise constant matrix coefficient discontinuous at three points, 0, 1, and ∞. The problem is solved exactly in terms of Kummer's solutions of the associated hypergeometric differential equation. Numerical results are reported for the length of the contact friction zone, the stress singularity factor, the normal displacement u2, and the dynamic energy release rate G. It is found that in the case of frictionless contact for both the sub-Rayleigh and super-Rayleigh regimes, G is positive and the stress intensity factor KII does not vanish. In the sub-Rayleigh case, the normal displacement is positive everywhere in the opening zone. In the super-Rayleigh regime, there is a small neighborhood of the ending point of the open zone where the normal displacement is negative.  相似文献   

18.
A novel experimental technique for measuring crack tipT-stress, and hence in-plane crack tip constraint, in elastic materials has been developed. The method exploits optimal positioning of stacked strain gage rosette near a mode I crack tip such that the influence of dominant singular strains is negated in order to determineT-stress accurately. The method is demonstrated for quasi-static and low-velocity impact loading conditions and two values of crack length to plate width ratios (a/W). By coupling this new method with the Dally-Sanford single strain gage method for measuring the mode I stress intensity factorK I , the crack tip biaxiality parameter is also measured experimentally. Complementary small strain, static and dynamic finite element simulations are carried out under plane stress conditions. Time histories ofK I andT-stress are computed by regression analysis of the displacement and stress fields, respectively. The experimental results are in good agreement with those obtained from numerical simulations. Preliminary data for critical values ofK I and β for dynamic experiments involving epoxy specimens are reported. Dynamic crack initiation toughness shows an increasing trend as β becomes more negative at higher impact velocities.  相似文献   

19.
Reanalyzed in detail is the stress and strain distribution near the tip of a Mode I steadily growing crack in an elastic and perfectly-plastic material. The crack tip region is divided into five angular sectors, one of which is singular in character and represents a rapid transition zone that becomes a line of strain discontinuity in the limit as crack tip is approached. It is shown for an incompressible material (ν=0.5) under plane strain that the local strain in all the angular sectors possesses the same logarithm singularity, i.e., In r where r is the radial distance measured from the crack tip. This result also prevails for the compressible material ( v < 0.5) and resolves a long standing controversy concerning the strain singularity in the sector just ahead of the crack tip.  相似文献   

20.
Fatigue growth behavior of out-of-plane gusset welded joints is studied using the strain energy density factor approach. Fatigue tests on two types of specimens with curvatures of ρ = 0 and ρ = 30 were performed in order to estimate fatigue strength under tension. Fatigue crack growth analysis is carried out to show the effects of initial crack shape, initial crack length and stress ratio. Fatigue crack growth parameters were obtained from crack growth curves assuming constant crack shapes. The results of analysis for the assumed crack shapes agreed well with the experimental data. Fatigue propagation life of the ρ = 30 specimen was larger than that of the ρ = 0 specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号